ST 2SA539

PNP Silicon Epitaxial Planar Transistor

for low frequency applications.

The transistor is subdivided into two groups, O and Y , according to its DC current gain.

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right.$)

Parameter	Symbol	Value	Unit
Collector Base Voltage	$-\mathrm{V}_{\text {CBO }}$	60	V
Collector Emitter Voltage	$-\mathrm{V}_{\text {CEO }}$	45	V
Emitter Base Voltage	$-\mathrm{V}_{\text {EBO }}$	5	V
Collector Current	$-\mathrm{I}_{\mathrm{C}}$	200	mA
Power Dissipation	$\mathrm{P}_{\text {tot }}$	400	mW
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Unit
DC Current Gain at $-\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$ Current Gain Group	$\begin{aligned} & \mathrm{h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \end{aligned}$	$\begin{gathered} 70 \\ 120 \end{gathered}$	-	$\begin{aligned} & 140 \\ & 240 \end{aligned}$	-
Collector Base Breakdown Voltage at $-\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	$-\mathrm{V}_{(\mathrm{BR}) \mathrm{CbO}}$	60	-	-	V
Collector Emitter Breakdown Voltage $\text { at }-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	$-\mathrm{V}_{\text {(BR)CEO }}$	45	-	-	V
Emitter Base Breakdown Voltage at $-I_{E}=10 \mu \mathrm{~A}$	- $\mathrm{V}_{\text {(BR) }{ }^{\text {ebo }} \text { (}}$	5	-	-	V
Collector Base Cutoff Current at $-\mathrm{V}_{\mathrm{CB}}=45 \mathrm{~V}$	$-\mathrm{I}_{\text {cво }}$	-	-	0.1	$\mu \mathrm{A}$
Emitter Base Cutoff Current at $-V_{E B}=3 \mathrm{~V}$	$-l_{\text {ebo }}$	-	-	0.1	$\mu \mathrm{A}$
Collector Emitter Saturation Voltage at $-I_{C}=150 \mathrm{~mA},-\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$	$-\mathrm{V}_{\text {CE(sat) }}$	-	-	0.5	V
Base Emitter Saturation Voltage at $-I_{C}=150 \mathrm{~mA},-\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$	$-\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	-	1.2	V
Base Emitter on Voltage at $-\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	$-V_{B E(\text { on })}$	0.6	-	0.9	V
Gain Bandwidth Product at $-\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	f_{T}	100	-	-	MHz
Collector Output Capacitance at $-\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {ob }}$	-	6	-	pF

SEMTECH ELECTRONICS LTD.

$\mathrm{V}_{\mathrm{CE} \text { (sat) }}, \mathrm{V}_{\mathrm{BE} \text { (sat) }}-\mathrm{I}_{\mathrm{C}}$

$\mathrm{C}_{\mathrm{ob}}-\mathrm{V}_{\mathrm{CB}}$

