LA4630N

Monolithic Linear IC

Features

- Stereo section
$9 \mathrm{~V} / 3 \Omega 3 \mathrm{~W} \times 2,12 \mathrm{~V} / 3 \Omega 5 \mathrm{~W} \times 2$
: NF-capacitorless power
- Super bass section
$9 \mathrm{~V} / 3 \Omega 6 \mathrm{~W}, 12 \mathrm{~V} / 3 \Omega 10 \mathrm{~W}$
: output capacitor, B
capacitorless power
This chip employs technology for eliminating pins and external connections to realize 3-dimensional power on a single chip. This IC is a single package power amplifier for making sound systems with punch.
- On-chip pop noise suppressor
- On-chip power switch circuit
- External and mute functions on chip.
- Protection functions on chip (thermal protection circuit and BTL section R_{L} short protection circuit)

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }}$ max	no signal*1	20	V
Thermal resistance	өj-c		2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum output current	Io peak		3	A
Allowable power dissipation	Pd max	With infinite heat sink	37.5	W
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Continued on next page.

[^0]Continued from preceding page.
*1 : Operational notes on the maximum supply voltage.

FRONT L/R	BTL	$\mathrm{V}_{\text {CC }}$ max	Conditions
$\mathrm{R}_{\mathrm{L}} \geq 3 \Omega$	$\mathrm{R}_{\mathrm{L}} \geq 3 \Omega$	20 V	No signal Front L/R input with capacitor $\mathrm{Rg}=0$ $B T L L / R$ input without capacitor $\mathrm{Rg}=0$
$\mathrm{R}_{\mathrm{L}} \geq 3 \Omega$	$\mathrm{R}_{\mathrm{L}} \geq 4 \Omega$	21V	
$\mathrm{R}_{\mathrm{L}} \geq 3 \Omega$	$\mathrm{R}_{\mathrm{L}} \geq 5 \Omega$	22V	
$\mathrm{R}_{\mathrm{L}} \geq 3 \Omega$	$\mathrm{R}_{\mathrm{L}} \geq 6 \Omega$	23V	
$\mathrm{R}_{\mathrm{L}} \geq 3 \Omega$	$\mathrm{R}_{\mathrm{L}} \geq 7 \Omega$	24 V	
$\mathrm{R}_{\mathrm{L}} \geq 3 \Omega$	$\mathrm{R}_{\mathrm{L}} \geq 8 \Omega$	24V	

For power supply transistor regulation, the equivalent power line resistance is 3Ω or greater.
*2 : The upper limit for V_{CC} op is V_{CC} max- 2 V .

[Design Note]

Select the target P_{O} under the a rated load/rated supply voltage conditions of $\mathrm{R}_{\mathrm{L}}=3$ to 8Ω and $\mathrm{V}_{\mathrm{CC}}=5$ to 18 V . Make sure that it does not exceed the package Pd max of 37.5 W . Note that heavy load and high V_{CC} conditions would bring about power efficiency deterioration depending on the drive design employed.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \Omega, \mathrm{f}=1 \mathrm{kHz}$

Parameter	Symbol	Conditions	Ratings			Unit
Quiescent flow-in current	${ }^{\text {I CCO }}$		35	70	140	mA
Standby current	IST			1.0	10.0	$\mu \mathrm{A}$
Power switch pin flow-in current	ISW			10.0		mA
Mute supply flow-in current	${ }^{\text {I CCm }}$			35.0	70.0	mA
Stereo Section						
Output power	$\mathrm{P}_{\mathrm{O}} 1$	$\mathrm{V}_{\text {CC }}=9 \mathrm{~V}, \mathrm{THD}=10 \%$	2.2	3.0		W
	$\mathrm{P}_{\mathrm{O}} 2$	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{THD}=10 \%$	4.2	5.0		W
Total harmonic distortion	THD	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$		0.20	1.0	\%
Input resistance	R_{i}	,		50		$\mathrm{k} \Omega$
Voltage gain	VG	- -	43	45	47	dB
Output noise voltage	V_{NO}	$\mathrm{Rg}=0, \mathrm{BPF}=20 \mathrm{~Hz}$ to 20 kHz		0.15	0.40	mV
Ripple rejection	SVRR	$\mathrm{f}_{\mathrm{R}}=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{dBm}$	45	55		dB
Channel separation	CHsep	$\mathrm{Rg}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0 \mathrm{dBm}$	45	50		dB
Muting attenuation	$A_{\text {ft }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{dBm}$		80		dB
Low-region roll off frequency		$\mathrm{VG}=-3 \mathrm{~dB}$		50		Hz
High-region roll off frequency		$V \mathrm{G}=-3 \mathrm{~dB}$		50		kHz
Super Bass Section						
Output power	PO_{0}	$V_{C C}=9 V / T H D=10 \%$	5.0	6.0		w
	P^{2}	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{THD}=10 \%$	8.0	10.0		W
Total harmonic distortion	THD	$\mathrm{VO}=1 \mathrm{~V}$		0.20	1.0	\%
Input resistance	R_{i}			30		$\mathrm{k} \Omega$
Voltage gain	VG		43	45	47	dB
Output noise voltage	NO	$\mathrm{Rg}=0, \mathrm{BPF}=20 \mathrm{~Hz}$ to 20 kHz		0.3	0.6	mV
Ripple rejection	SVRR	$\mathrm{f}_{\mathrm{R}}=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{dBm}$	50	60		dB
Muting attenuation	$A_{\text {tt }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{dBm}$		80		dB
Low-region roll off frequency	L	VG: -3dB		5		Hz
High-region roll off frequency	f_{H}	VG : -3dB		40		kHz
Output offset voltage	$\mathrm{V}_{\text {OFF }}$	$\mathrm{Rg}=0$	-150		+150	mV

Package Dimensions

unit : mm (typ)
3109A

Block Diagram

Note 1 : The motor should not be connected to the power switch pin since transient noise may appear on the amplifier outputs when the motor is started or stopped.
Note 2 : Audio mute is enabled by connecting a 300Ω resistance between the DC pin (pin 10) and ground. DC bias control of both the stereo ($\mathrm{L} \mathrm{ch}, \mathrm{R} / \mathrm{ch}$) and BTL (super bass) channels is there enabled, and all audio output signals can be muted by controlling the MUTE pin.

Sample Printed Circuit Pattern

[^1]
Pin Voltages

Pin No.	1	2	3	4	5	6	7	8	9
Name	OUT No	PWR GND 2	OUT Inv	BS R	OUT R	PWR GND 1	BS L	OUT L	V_{CC} 1
Pin Voltage (V)	4.0	0	4.0	8.1	4.5	0	8.1	4.0	9.0

Pin No.	10	11	12	13	14	15	16	17	18
Name	DC	IN L	IN R	PRE GND	IN No	NF Inv	NF No	PWR SW	CC 2
Pin Voltage (V)	4.5	1.4	1.4	0	21 $[\mathrm{mV}]$	1.4	1.4	9.0	9.0

Po Chart

Item	R_{L}	9 V	12 V	15 V
FRONT L/R	8Ω	1.4 W	2.5 W	3.9 W
	6Ω	1.75 W	3.2 W	5.0 W
	4Ω	2.4 W	4.3 W	6.4 W
	3Ω	3.2 W	5.6 W	-
	8Ω	3.2 W	6.4 W	11.0 W
	6Ω	4.0 W	8.1 W	13.5 W
	4Ω	5.3 W	10.4 W	-
	3Ω	6.4 W	12.4 W	-

LA4630N

LA4630N

Notes on using this IC

- Always short power supply pins 9 and 16 on the copper foil of the printed circuit pattern and apply the equivalent power supply voltage.
- Pin 17 is designed for the power switch.

It can be switched on and off with a small current capacity switch, but the point to watch out for is that if the voltgae loss between pins 17 and 18 is too large, there may be problems in the biasing and the power may drop.

- When switching with a transistor, the general practice is to insert a PNP transistor between pins 17 and 18 .

Notes on Mounting Radiator Fin

1. The tightening torque should be in the range of 39 to $59 \mathrm{~N} \cdot \mathrm{~cm}$.
2. The distance between screw holes of the radiator fin must coincide with the distance between screw holes of the 16 . With case outline dimensions L and R referred to, the screws must be tightened with the distance between them as close to each other as possible.

3. The screw to be used must have a head equivalent to the one of truss machine screw or binder machine screw defined by JIS. Washers must be also used to protect the C case.
4. No foreign matter such as cutting particles must exist between heat sink and radiator fin. When applying grease on the junction surface, it must be applied uniformly on the whole surface.
5. IC lead pins must be soldered to the printed circuit board after the radiator fin is mounted on the IC.

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.

- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
\square Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
■ Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

[^2]
[^0]: A 1y and all ANYC Semicondyctor Co.,Ltd. products described or contained herein are, with regard to "stindard anpliu in" .ntendfd for the use as general electronics equipment (home appliances, AV equipment, commu catir revice, office qquipment, industrial equipment etc.). The products mentioned herein shall not be intende. use or any "special application" (medical equipment whose purpose is to sustain life, aerospace instru. nt, ear cor,trs/ device, burning appliances, transportation machine, traffic signal system, safety $e^{r} \quad$ neı. ${ }^{+c}$.) that sha'. require extremely high level of reliability and can directly threaten human lives in case failur or malfuncugh of the product or may cause harm to human bodies, nor shall they grant any guarantee -of. you sr.oyd intend to use our products for applications outside the standard applications of our custo. iwho is considering such use and/or outside the scope of our intended standard applications, please censult with $1 / \mathrm{s}$ prior to the intended use. If there is no consultation or inquiry before the intended use, our customer srall be solely responsible for the use.

 - Specisicatior,s of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

[^1]: * : Insert $0.15 \mu \mathrm{~F}$ between power supply and ground at the root of the pins.

[^2]: This catalog provides information as of Nobember, 2008. Specifications and information herein are subject to change without notice.

