LA7975
 Monolithic Linear IC

Overview

The LA7975 is an IC that converts PAL SIF signals $(5.5 \mathrm{MHz}, 6 \mathrm{MHz}$, and 6.5 MHz) to 6 MHz . For the sake of high sound quality, this IC uses a unique mixer technique to supress interference from NICAM signals.

Features

- Resistant to interference by NICAM signals.
- Small SIP-5 package.
- Wide range of usage voltage (5 V to 12 V).

Functions

- Mixer, amplifier, oscillator, oscillator mute.

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Operating Conditions at $/ \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}			V
Operating voltage range	V_{CC} op		5 to 12	V

LA7975
Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$

Parameter		Symbol	Conditions	Test point	Ratings			Unit	
		min			typ	max			
Current drain			I_{CC}		Pin 2	5	6.5	9	mA
Conversion gain	5.5 MHz	G5.5	$80 \mathrm{~dB} / \mu \mathrm{V}$ input	Pin 5	10	13.5	17	dB	
	6.5 MHz	G6.5	80dB/ $\mu \mathrm{V}$ input	Pin 5	10	13.5	17	dB	
	6.0 MHz	G6.0	$80 \mathrm{~dB} / \mu \mathrm{V}$ input, Pin 4 grounded with $10 \mathrm{k} \Omega$	Pin 5	18.5		25.5	dB	
Oscillation level		$V_{\text {OSC }}$		Pin 4	15		80	mVp-p	
Maximum output level		V_{O} max	$5.5 \mathrm{MHz} 100 \mathrm{~dB} / \mu \mathrm{V}$ input	Pin 5				$\mathrm{dB} / \mu \mathrm{V}$	
Input impedance		Ri	5.5 MHz input			4.8		k Ω	
Pin voltages		V1		Pin 1			3.4		
		V4		Pin 4	7.6	8	8.4		
		V5		Pin 5	7.2	7.6		V	
500 kHz level difference relative to 6 MHz		OSC leak		$\text { Pin } 5$				dB	
Maximum input level		$V_{\text {IN }}$ max			90			$\mathrm{dB} / \mu \mathrm{V}$	
Oscillation stop current		I_{4}		in			300	$\mu \mathrm{A}$	

Package Dimensions

unit : mm (typ)
3042D

Sample Application Circuit

Referance Example 1

Referance Example 2

Figure 1

Figure 2

- Pin 1 is the SIF input pin.

The filter in Figure 2 can be connected to the input section to improve the buzz characteristic.
Figure 3 shows the characteristics for the filter in Figure 2.
If C1 is too small, the buzz characteristic improves for normal input, but the filter cuts into the sound carrier and the buzz characteristic deteriorates for the P/S (picture/sound carrier) ratio.
Use C1 $\approx 20 \mathrm{pF}$ to 47 pF .

Figure 3

- Pin 4 is the ceramic oscillator pin.

To make the oscillation waveform approach a sine wave,the oscillation level is controlled internally.
Oscillation leyels of 15 to 80 mVp -p at Pin 4 give the waveform shown in Figure 5.
To stop oscillation, attach an external resistor as in Figure 6 and switch S1 on.

Here are the conditions for handling multiple systems.

Input frequency	Oscillator	Pin 5 output
5.5 MHz	500 kHz	6 MHz
6.0 MHz	Oscillation stop	6 MHz (pass through)
6.5 MHz	500 kHz	6 MHz
4.5 MHz	1.5 MHz	6 MHz

Figure 7

Figure 8 shows a proposed multi-system

Figure 8

Figure 9

Reference Characteristic Diagram

This catalog provides information as of June, 2008. Specifications and information herein are subject to change without notice.

