

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

General Description

The MAX4601/MAX4602/MAX4603 guad analog switches feature low on-resistance of 2.5Ω max. On-resistance is matched between switches to 0.5Ω max and is flat $(0.5\Omega \text{ max})$ over the specified signal range. Each switch can handle Rail-to-Rail® analog signals. The offleakage current is only 2.5nA maximum at TA = +85°C. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, require less board space, and are more reliable than mechanical relays.

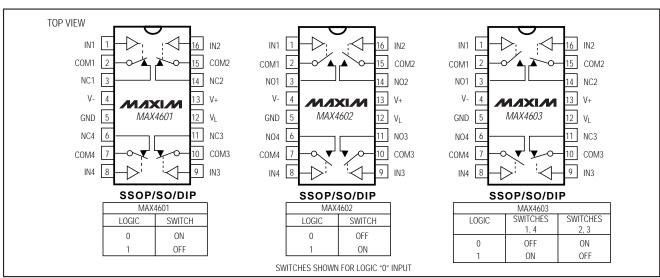
The MAX4601 has four normally closed (NC) switches, the MAX4602 has four normally open (NO) switches, and the MAX4603 has two NC and two NO switches.

These switches operate from a single supply of +4.5V to +36V or from dual supplies of ±4.5V to ±20V. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using $\pm 15V$ or a single +12V supply.

Applications

Reed Relay Replacement **Test Equipment** Communication Systems PBX, PABX Systems Audio-Signal Routing **Avionics**

Features


- ♦ Low On-Resistance (2.5Ω max)
- **♦ Guaranteed Ron Match Between Channels** $(0.5\Omega \text{ max})$
- ♦ Guaranteed Ron Flatness over Specified Signal Range (0.5 Ω max)
- ♦ Rail-to-Rail Signal Handling
- ♦ Guaranteed ESD Protection > 2000V per Method 3015.7
- ♦ Single-Supply Operation: +4.5V to +36V Dual-Supply Operation: ±4.5V to ±20V
- ♦ TTL/CMOS-Compatible Control Inputs

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4601CAE	0°C to +70°C	16 SSOP
MAX4601CWE	0°C to +70°C	16 Wide SO
MAX4601CPE	0°C to +70°C	16 Plastic DIP
MAX4601EAE	-40°C to +85°C	16 SSOP
MAX4601EWE	-40°C to +85°C	16 Wide SO
MAX4601EPE	-40°C to +85°C	16 Plastic DIP

Ordering Information continued at end of data sheet.

Pin Configurations/Functional Diagrams/Truth Tables

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+ to GND	
V+ to V	0.3V to +44V
V _L to GND	.(GND - 0.3V) to $(V + + 0.3V)$
All Other Pins to DGND (Note 1)	(V 0.3V) to $(V+ + 0.3V)$
Continuous Current (COM_, NO_, N	IC_)±200mA
Peak Current (COM_, NO_, NC_)	
(pulsed at 1ms, 10% duty cycle).	±300mA

Continuous Power Dissipation ($T_A = +7$	70°C)
16 SSOP (derate 7.1mW/°C above +	70°C)571mW
16 Wide SO (derate 9.52mW/°C above	ve +70°C)762mW
16 Plastic DIP (derate 10.53mW/°C a	bove +70°C)842mW
Operating Temperature Ranges	
MAX460_C_E	0°C to +70°C
MAX460_E_E	40°C to +85°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec).	+300°C

Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+=+15V, V-=-15V, V_L=5V, V_{IN_H}=2.4V, V_{IN_L}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
ANALOG SWITCH								
Input Voltage Range	$V_{COM_,}$ $V_{NC_}$	(Note 3)		V-		V+	٧	
COM_ to NO or NC_ On-Resistance	R _{ON}	$I_{COM} = 10$ mA, V_{NO} or $V_{NC} = \pm 10$ V	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to T_{MAX}		1.7	2.5 2.7	Ω	
COM_ to NO_ or NC_ On-Resistance Match Between	ΔR _{ON}	I _{COM} = 10mA, V _{NO}	$T_A = +25^{\circ}C$		0.1		Ω	
Channels (Note 4)	011	or = V_{NC} = ±10V	$T_A = T_{MIN}$ to T_{MAX}			0.5		
COM_ to NO_ or NC_	Rflat(on)	I _{COM} _ = 10mA; V _{NO} _	$T_A = +25^{\circ}C$		0.1	0.4	Ω	
On-Resistance Flatness (Note 5)	MFLAT(ON)	or V _{NC} _ = -5V, 0, 5V	$T_A = T_{MIN}$ to T_{MAX}			0.5	22	
Off-Leakage Current	I _{NO_} , I _{NC_} V _C	$V_{COM_{-}} = \pm 10V$, $T_{A} = +25^{\circ}C$	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	nA	
(NO_ or NC_) (Note 6)	INO_, INC_	V_{NO} or $V_{NC} = \pm 10V$	$T_A = T_{MIN}$ to T_{MAX}	-2.5		2.5		
COM Off-Leakage Current	I _{COM_(OFF)}	$V_{COM} = \pm 10V$	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	nA	
(Note 6)	'COM_(OFF)	V_{NO} or $V_{NC} = \pm 10V$	$T_A = T_{MIN}$ to T_{MAX}	-2.5		2.5	1 IIA	
COM On-Leakage Current	ICOM (ON)	$V_{COM} = \pm 10V$, V_{NO} or $V_{NC} = \pm 10V$	$T_A = +25^{\circ}C$	-1	0.2	1	nA	
(Note 6)	'COM_(ON)	or floating	$T_A = T_{MIN}$ to T_{MAX}	-10		10	117.	
LOGIC INPUT								
Input Current with Input Voltage High	I _{IN_H}	IN_ = 2.4V, all others = 0.8V		-0.500	0.001	0.500	μΑ	
Input Current with Input Voltage Low	I _{IN_L}	IN_ = 0.8V, all others = 2.4V		-0.500	0.001	0.500	μΑ	
Logic Input High Voltage	V _{IN_} H			2.4	1.7		V	
Logic Input Low Voltage	V _{IN_L}				1.7	0.8	V	

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+=+15V, V-=-15V, V_L=5V, V_{IN_H}=2.4V, V_{IN_L}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
POWER SUPPLY								
Power-Supply Range				±4.5		±20.0	V	
Docitive Supply Current	1+	All channels on or off,	$T_A = +25^{\circ}C$	-0.5	0.001	0.5		
Positive Supply Current	1+	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	- μΑ	
Negative Supply Current	-	All channels on or off,	$T_A = +25^{\circ}C$	-0.5	0.001	0.5		
Negative Supply Current	-	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA	
Logic Supply Current	IL	All channels on or off,	$T_A = +25^{\circ}C$	-0.5	0.001	0.5	шА	
Logic Supply Current	'L	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μΑ	
Ground Current	IGND	All channels on or off,	$T_A = +25^{\circ}C$	-0.5	0.001 0.5	0.5	- μΑ	
Ground Current	IGND	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5		
SWITCH DYNAMIC CHARAC	TERISTICS	•						
Turn-On Time	toN	Figure 2, $V_{COM} = \pm 10V$, $T_A = +25^{\circ}C$			160	250	ns	
Turn-Off Time	t _{OFF}	Figure 2, $V_{COM} = \pm 10$	$V, T_A = +25^{\circ}C$		190	350	ns	
Charge Injection	Q	C_L = 1.0nF, V_{GEN} = 0, R_{GEN} = 0, Figure 3, T_A = +25°C			120		рС	
Off-Isolation (Note 7)	V _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 4, $T_A = +25$ °C			-56		dB	
Crosstalk (Note 8)	V _{CT}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 5, $T_A = +25$ °C			-59		dB	
NC_ or NO_ Capacitance	C(OFF)	$f = 1MHz$, Figure 6, $T_A = +25$ °C			55		pF	
COM Off-Capacitance	C _(COM)	f = 1MHz, Figure 6, T _A = +25°C			55		pF	
On-Capacitance	C _(COM)	$f = 1MHz$, Figure 7, $T_A = +25$ °C			250		pF	

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS	
ANALOG SWITCH								
Input Voltage Range	V _{COM_} , V _{NO_} ,	(Note 3)		GND		V+	V	
COM_ to NO or NC_ On-Resistance	R _{ON}	$I_{COM} = 10mA$, V_{NO} or $V_{NC} = 10V$	$T_A = +25^{\circ}C$ $T_A = T_{MIN}$ to T_{MAX}		3	4 5	Ω	
COM_ to NO_ or NC_ On-Resistance Match Between	ΔR _{ON}	I _{COM} _ = 10mA, V _{NO} _ or = V _{NC} = 10V	$T_A = +25^{\circ}C$		0.03	0.4	Ω	
Channels (Note 4) COM_ to NO_ or NC_		I _{COM} _ = 10mA; V _{NO} _	$T_A = T_{MIN}$ to T_{MAX} $T_A = +25$ °C		0.1	0.5		
On-Resistance Flatness (Note 5)	R _{FLAT} (ON)	or V _{NC} = 3V, 6V, 9V	$T_A = T_{MIN}$ to T_{MAX}			0.5	Ω	
Off-Leakage Current	I _{NO_}	V _{COM} _ = 1V, 10V; V _{NO} _ or V _{NC} _ = 10V,	$T_A = +25^{\circ}C$	-0.5	0.01	0.5	r ^	
(NO_ or NC_) (Notes 6, 9)	I _{NC} _	1V 1V	$T_A = T_{MIN}$ to T_{MAX}	-2.5		2.5	- nA	
COM Off-Leakage Current (Notes 6, 9)	ICOM_(OFF)	V_{NO} or V_{NC} = 10V, 1V; V_{COM} = 1V, 10V	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$	-0.5 -2.5	0.01	0.5 2.5	nA	
COM On-Leakage Current (Notes 6, 9)	I _{COM_(ON)}	V _{COM} _ = 1V ,10V; V _{NO} _ or V _{NC} _ = 1V, 10V, or floating	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$	-1 -10	0.01	1 10	- nA	
LOGIC INPUT								
Input Current with Input Voltage High	I _{IN_} H	IN_ = 2.4V, all others = 0.8V		-0.500	0.001	0.500	μА	
Input Current with Input Voltage Low	I _{IN_L}	IN_ = 0.8V, all others =	= 2.4V	-0.500	0.001	0.500	μΑ	
Logic Input High Voltage	V _{IN_H}			2.4			V	
Logic Input Low Voltage	V _{IN_L}					0.8	V	
POWER SUPPLY								
Power-Supply Range				4.5		36.0	V	
Positive Supply Current	I+	All channels on or off, V _{IN} = 0 or 5V	$T_A = +25$ °C $T_A = T_{MIN}$ to T_{MAX}	-0.5 -5	0.001	0.5 5	μΑ	
Logic Supply Current	IL	All channels on or off, V _{IN} = 0 or 5V	$T_A = +25$ °C $T_A = T_{MIN}$ to T_{MAX}	-0.5 -5	0.001	0.5 5	μΑ	
Ground Current	IGND	V _{IN} = 0 or 5V	$T_A = +25^{\circ}C$	-0.5	0.001	0.5	μΑ	
	05	****	$T_A = T_{MIN}$ to T_{MAX}	-5		5	'	

MIXINN

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

 $(V+=12V, V-=0, V_L=5V, V_{IN_H}=2.4V, V_{IN_L}=0.8V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX (Note 2)	UNITS
SWITCH DYNAMIC CHARACTE	RISTICS			•
Turn-On Time	ton	Figure 2, V _{COM} = 10V, T _A = +25°C	160	ns
Turn-Off Time	toff	Figure 2, V _{COM} _ = 10V, T _A = +25°C	170	ns
Charge Injection	Q	$C_L = 1.0$ nF, $V_{GEN} = 0$, $R_{GEN} = 0$, Figure 3, $T_A = +25$ °C	20	рС
Crosstalk (Note 8)	V _{CT}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 5, $T_A = +25^{\circ}C$	-60	dB
NC_ or NO_ Capacitance	C _(OFF)	f = 1MHz, Figure 6, T _A = +25°C	85	pF
COM Off-Capacitance	C _(COM)	f = 1MHz, Figure 6, T _A = +25°C	85	pF
On-Capacitance	C _(COM)	$f = 1MHz$, Figure 7, $T_A = +25^{\circ}C$ 140		pF

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

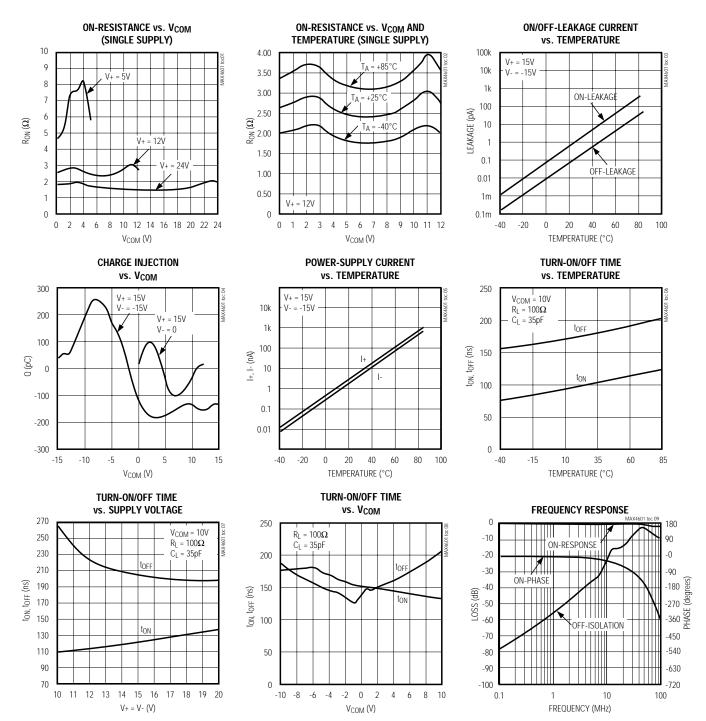
Note 3: Guaranteed by design.

Note 4: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$.

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

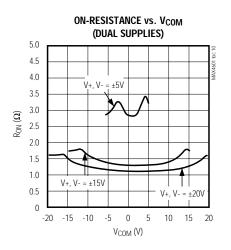
Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.

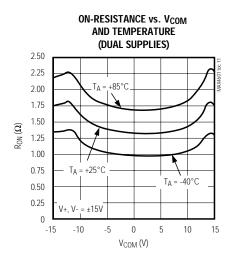
Note 7: Off-isolation = $20 \log_{10} [V_{COM} / (V_{NC} \text{ or } V_{NO})]$, $V_{COM} = \text{ output}$, $V_{NC} \text{ or } V_{NO} = \text{ input to off switch.}$


Note 8: Between any two switches.

Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies.

5


_Typical Operating Characteristics


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

_Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

	PIN		NAME	FUNCTION	
MAX4601	MAX4602	MAX4603	NAME	FUNCTION	
1, 16, 9, 8	1, 16, 9, 8	1, 16, 9, 8	IN1, IN2, IN3, IN4	Logic-Control Digital Inputs	
2, 15, 10, 7	2, 15, 10, 7	2, 15, 10, 7	COM1, COM2, COM3, COM4	Analog Switch Common Terminals	
3, 14, 11, 6	_	_	NC1, NC2, NC3, NC4	Analog Switch Normally Closed Terminals	
_	3, 14, 11, 6	_	NO1, NO2, NO3, NO4	Analog Switch Normally Open Terminals	
_	_	3, 6	NO1, NO4	Analog Switch Normally Open Terminals	
_	_	14, 11	NC2, NC3	Analog Switch Normally Closed Terminals	
4	4	4	V-	Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation.	
5	5	5	GND	Ground	
12	12	12	VL	Logic-Supply Input	
13	13	13	V+	Positive Analog Supply Input	

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. These protection diodes are not recommended when using a single supply.

Off-Isolation at High Frequencies

In 50Ω systems, the high-frequency on-response of these parts extends from DC to above 100MHz with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. (Above 300MHz, the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances.

Above 5MHz, circuit board layout becomes critical, and it becomes difficult to characterize the response of the

switch independent of the circuit. The graphs shown in the *Typical Operating Characteristics* were taken using a 50Ω source and load connected with BNC connectors to a circuit board deemed "average;" that is, designed with isolation in mind, but not using strip-line or other special RF circuit techniques. For critical applications above 5MHz, use the MAX440, MAX441, and MAX442, which are fully characterized up to 160MHz.

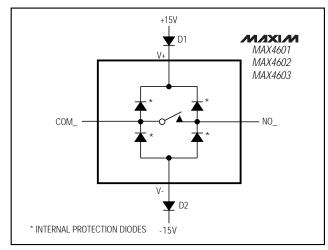


Figure 1. Overvoltage Protection Using External Blocking Diodes

Timing Diagrams/Test Circuits

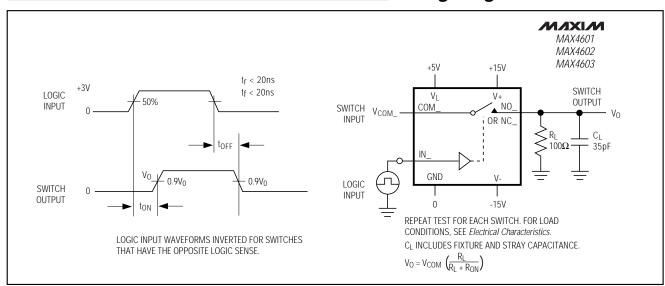


Figure 2. Switching-Time Test Circuit

Timing Diagrams/Test Circuits (continued)

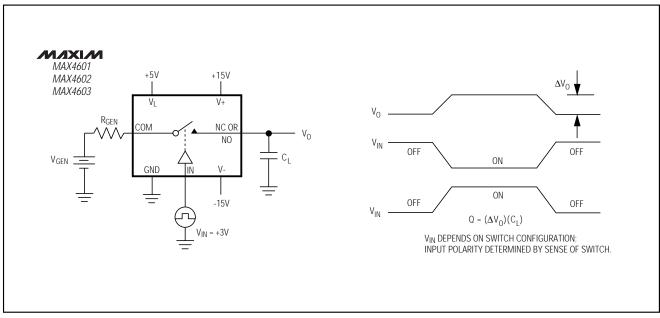


Figure 3. Charge-Injection Test Circuit



Figure 4. Off-Isolation Test Circuit

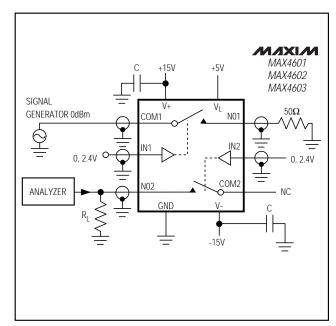


Figure 5. Crosstalk Test Circuit

Timing Diagrams/Test Circuits (continued)

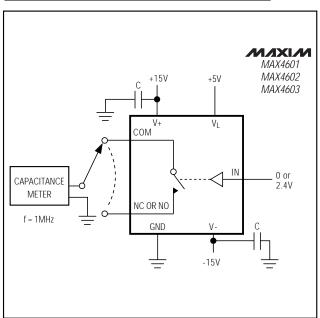
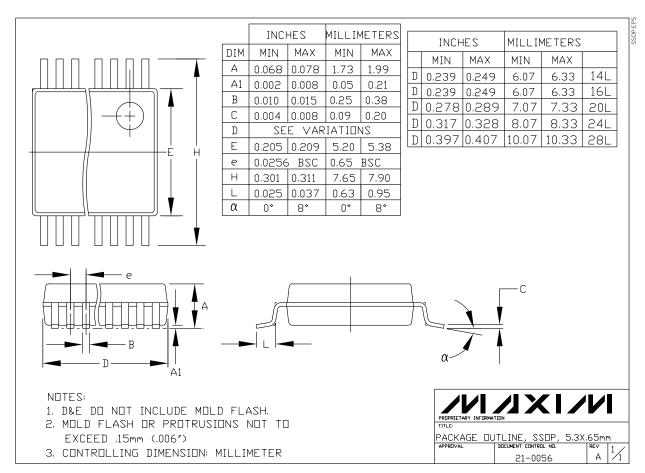


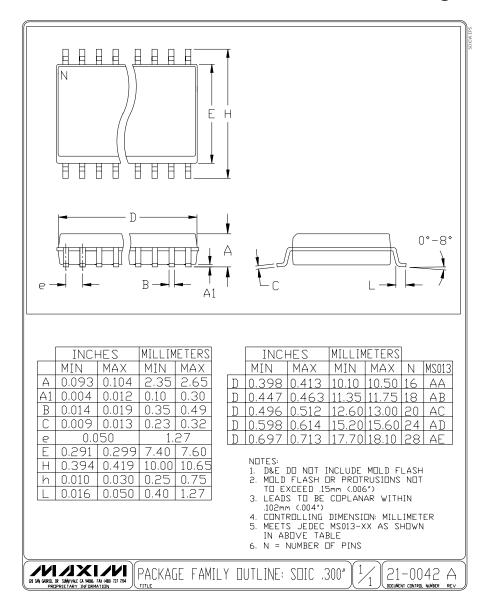
Figure 6. Switch Off-Capacitance Test Circuit

CAPACITANCE METER f = 1MHz NC OR NO GND VC T SNA MAX4601 MAX4602 MAX4603 O or 2.4V

Figure 7. Switch On-Capacitance Test Circuit


Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4602CAE	0°C to +70°C	16 SSOP
MAX4602CWE	0°C to +70°C	16 Wide SO
MAX4602CPE	0°C to +70°C	16 Plastic DIP
MAX4602EAE	-40°C to +85°C	16 SSOP
MAX4602EWE	-40°C to +85°C	16 Wide SO
MAX4602EPE	-40°C to +85°C	16 Plastic DIP
MAX4603CAE	0°C to +70°C	16 SSOP
MAX4603CWE	0°C to +70°C	16 Wide SO
MAX4603CPE	0°C to +70°C	16 Plastic DIP
MAX4603EAE	-40°C to +85°C	16 SSOP
MAX4603EWE	-40°C to +85°C	16 Wide SO
MAX4603EPE	-40°C to +85°C	16 Plastic DIP


_Chip Information

TRANSISTOR COUNT: 100

Package Information

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600