

Product Specification

Linear Products

DESCRIPTION

The SAA3027 is intended for a general purpose (RC-5) infrared remote control system. The device can generate 2048 different commands and utilizes a keyboard with a single-pole switch per key. The commands are arranged so that 32 systems can be addressed, each system containing 64 different commands.

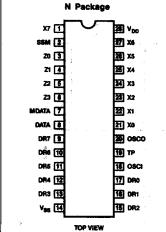
The circuit response to legal (one key pressed at a time) and illegal (more than one key pressed at a time) keyboard operation is specified later in this publication (see KEY ACTIVITIES).

FEATURES

- Transmitter for 32 × 64 commands
- One transmitter controls 32 systems
- Very low current consumption
- For infrared transmission link
- Transmission by biphase technique
- Short transmission times; speedup of system reaction time
- LC oscillator; no crystal required
- Input protection
- Test mode facility

APPLICATION

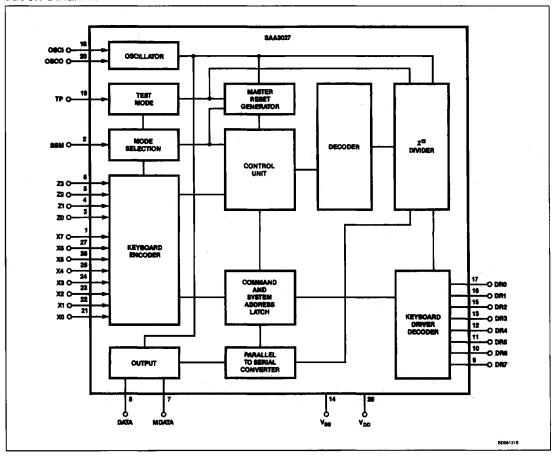
• Remote control systems


ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
28-Pin Plastic DIP (SOT-117)	-25°C to +85°C	SAA3027PN

ABSOLUTE MAXIMUM RATINGS

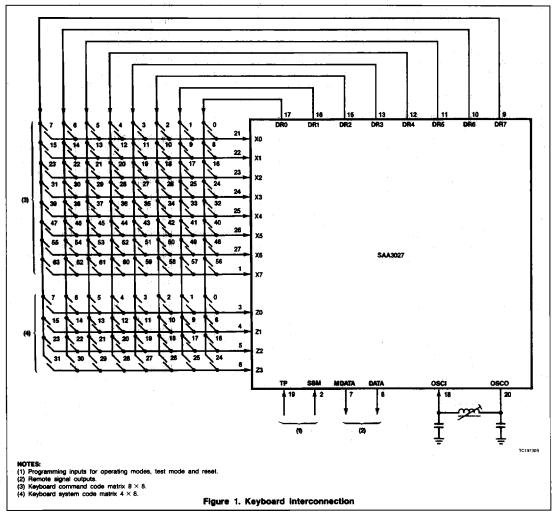
SYMBOL	PARAMETER	RATING	UNIT
V _{DD}	Supply voltage range with respect to Vss	-0.5 to +15	V,
VI	Input voltage range	-0.5 to (V _{DD} + 0.5)	٧
± I _I	Input current 65.477 og 7	10	mA
V _O	Output voltage range	-0.5 to (V _{DD} + 0.5)	٧
± lo	Output current	10	mA
Po	Power dissipation output OSCO	50	mW
Po	Power dissipation per output (all other outputs)	100	mW
P _{TOT}	Total power dissipation per package	200	mW
T _A	Operating ambient temperature range	-25 to +85	°C
TSTG	Storage temperature range	-65 to +150	°C


PIN CONFIGURATION

		TOP VIEW
		CD12080S
PIN NO.	SYMBOL	DESCRIPTION
1	X7	
	¹xo	
	·X1	
23		Keyboard command inputs with
24		P-channel pull-up transistors
25		
	X6 J	
	SSM	System mode selection input
	Z0 }	
4	Ž1 }	Keyboard system inputs with
5		P-channel pull-up translators.
6	23 J	*
7	MDATA }	Remote signal outputs
8	DATA 5	(3-state outputs)
9	OR7	
	DR6	
	DR5	
	DR4	Scan driver outputs with open-
13		drain N-channel transistors
15		
16	DR1	
17	DR0 J	
14	Vss	Negative supply (ground)
18	OSCI	Oscillator input
19	TP	Test pin
20	OSC0	Oscillator output
28	V _{DD}	Positive supply

SAA3027

BLOCK DIAGRAM


DC AND AC ELECTRICAL CHARACTERISTICS V_{SS} = 0V; T_A = -25°C to 85°C, unless otherwise specified.

SYMBOL	DADAMETER	V 00	LIMITS						
	PARAMETER	ν ₀₀ (V)	Min	Тур	Max	UNI			
V _{DD}	Supply voltage		4.75		12.6	ν			
	Supply current at t _O = 0mA for all outputs; X0 to X7 and Z3 at V _{OD} or all other inputs at V _{DD} or V _{SS} ; excluding leakage current from open drain N-channel outputs;	The second secon							
loo	T _A = 25°C	12.6	- 1	1.0	10	μΑ			
Inputs					1 11 11 11 11 11				
Keyboard is	nputs X and Z with P-channel pull-up transistors	S		. <u> </u>					
-11	Input current (each input) at V ₁ = 0V; TP = SSM = LOW	4.75 to 12.6	10	. 4	300	μА			
VIH	Input voltage HIGH	4.75 to 12.6	$0.7 \times V_{DD}$		V _{DD}	٧			
V _{IL}	Input voltage LOW	4.75 to 12.6	0		$0.3 \times V_{DD}$	٧			
I _{IR}	Input leakage current at T _A = 25°C; TP = HiGH; V _I = 12.6V V _I = 0V	12.6 12.6		jen a		μΑ Α μ			
SSM, TP a	nd OSCI inputs	1.							
VIH	Input voltage HIGH	4.75 to 12.6	$0.7 \times V_{DD}$		V _{DD}	٧			
V _{IL}	Input voltage LOW	4.75 to 12.6	0		0.3 × V _{DD}	٧			
h _R	Input leakage current at T _A = 25°C; V _I = 12.6V V _I = 0V	12.6 12.6	. ,	er ger i k	1 1	λ η (λη			
Outputs DATA, MD	ATA	Property of the second		Trips					
V _{OH}	Output voltage HIGH at -I _{OH} = 0.8mA	4.75 to 12.6	V _{DD} -0.6	10 24 12 W/V		٧			
V _{OL}	Output voltage LOW at IOL = 0.8mA	4.75 to 12.6		A May be	0.4	٧			
lor -lon	Output leakage current at: V _O = 12.6V V _O = 0V T _A = 25°C; V _O = 12.6V	12.6 12.6 12.6			10 20	ئىر ئىر ئىر			
-lon	V _O = 0V	12.6	<u> </u>		2	μl			
DRO to DF	R7 outputs								
V _{OL}	Output voltage LOW at IOL = 0.35mA	4.75 to 12.6			0.4	٧			
lon	Output leakage current at V _O = 12.6V at V _O = 12.6V;	12.6			10	μJ			
I _{OR}	T _A = 25°C	12.6			1	μ			
OSCO out	put	,							
V _{OH}	Output voltage HIGH at -I _{OH} = 0.2mA; OSCI = V _{SS}	4.75 to 12.6	V _{DD} - 0.6			٧			
Vol	Output voltage LOW at -I _{OL} = 0.45mA; OSCi = V _{DD}	4.75 to 12.6			0.5	٧			
Oscillator									
fosci fosci	Maximum oscillator frequency at C _L = 40pF (Figures 4 and 5)	4.75 6	75 120	72 72		kH kH			
fosci	<u> </u>	12.6	300	72		kH			

April 25, 1988

Handling

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

FUNCTIONAL DESCRIPTION Combined System Mode (SSM = LOW)

The X and Z-lines are active HIGH in the quiescent state. Legal key operation either in the X-DR or Z-DR matrix starts the debounce cycle. When the contact is made for two bit times without interruption, the oscillator-enable signal is latched and the key may be

released. Interruption within the two bit times resets the internal action. At the end of the debounce time, the DR-outputs are switched off and two scan cycles are started, switching on the DR-outputs one by one. When a Z or X-input senses a LOW level, a latch-enable signal is fed to the system address or command latches; depending on whether sensing was found in the Z or X-input matrix. After latching a system address number, the device

will generate the last command (i.e., all command bits '1') in the chosen system as long as the key is pressed. Latching of a command number causes the device to generate this command together with the system address number stored in the system address latch. Releasing the key will reset the internal action if no data is transmitted at that time. Once the transmission is started, the signal will be finished completely.

SAA3027

Single System Mode (SSM = HIGH)

The X-lines are active HIGH in the quiescent state; the pull-up transistors of the Z-lines are switched off and the inputs are disabled. Only legal key operation in the X-DR matrix starts the debounce cycle. When the contact is made for two bit times without interruption, the oscillator-enable signal is latched and the key may be released. Interruption within the two bit times resets the internal action. At the end of the debounce time, the pull-up transistors in the X-lines are switched off; those in the Z-lines are switched on during the first scan cycle. The wired connection in the Zmatrix is then translated into a system address number and stored in the system address latch. At the end of the first scan cycle the pull-up transistors in the Z-lines are switched off and the inputs are disabled again, while the transistors in the X-lines are switched on. The second scan cycle produces the command number which, after latching, is transmitted together with the system address number.

inputs

The command inputs X0 to X7 carry a logical '1' in the quiescent state by means of an internal pull-up transistor. When SSM is LOW, the system inputs Z0 to Z3 also carry a logical '1' in the quiescent state by means of an internal pull-up transistor.

When SSM is HIGH, the transistors are switched off and no current flows via the wired connection in the Z-DR matrix.

Oscillator

OSCI and OSCO are the input/output, respectively, of a two-pin oscillator. The oscillator is formed externally by one inductor and two capacitors and operates at 72kHz (typical)

Key-Release Detection

An extra control bit is added which will be complemented after key-release. In this way the decoder gets an indication that shows if the next code is to be considered as a new command. This is very important for multi-

digit entry (e.g. by channel numbers or Teletext/Viewdata pages). The control bit will only be complemented after finishing at least one code transmission. The scan cycles are repeated before every code transmission, so that, even by 'take-over' of key operation during code transmission, the correct system and command numbers are generated.

Outputs

The output DATA carries the generated information according to the format given in Figure 2 and Tables 1 and 2. The code is transmitted in biphase; definitions of logical '1' and '0' are given in Figure 3.

The code consists of four parts:

- Start part formed by 2 bits (two times a logical '1')
- · Control part formed by 1 bit
- · System part formed by 5 bits
- · Command part formed by 6 bits

The output MDATA carries the same information as output DATA but is modulated on a carrier frequency of half the oscillator frequency, so that each bit is presented as a burst of 32 oscillator periods. To reduce power consumption, the carrier frequency has a 25% duty cycle.

In the quiescent state, both outputs are nonconducting (3-state outputs). The scan drivers DR0 to DR7 are of the open drain Nchannel type and are conducting in the quiescent state of the circuit. After a legal key operation, a scanning procedure is started so that they are switched into the conducting state one after the other.

Reset Action

The circuit will be reset immediately when a key release occurs during:

- Debounce time
- · Between two codes

When a key release occurs during scanning of the matrix, a reset action will be accomplished if:

- The key is released while one of the driver outputs is in the low-ohmic '0' state;
- The key is released before detection of that key;
- There is no wired connection in the Z-DR matrix while SSM is HIGH.

Test Pin

The test pin TP is an input which can be used for testing purposes.

When LOW, the circuit operates normally.

When HIGH, all pull-up transistors are switched off, the control bit is set to zero and the output data is 2^6 times faster than normal.

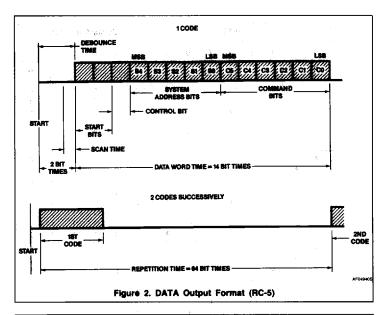
When Z2 = Z3 = LOW, the counter will be reset to zero.

Key Activities

Every connection of one X-input and one DRoutput is recognized as a legal keyboard operation and causes the device to generate the corresponding code.

Activating more than one X-input at a time is an illegal keyboard operation and no circuit action is taken (oscillator does not start).

When SSM is LOW, every connection of one Z-input and one DR-output is recognized as a legal keyboard operation and causes the device to generate the corresponding code.


Activating two or more Z-inputs, or Z-inputs and X-inputs, at one time is an illegal key-board operation and no circuit action is taken.

When SSM is HIGH, a wired connection must be made between a Z-input and a DR-output. If no connection is made, the code is not generated.

When one X or Z-input is connected to more than one DR-output, the last scan signal is considered legal.

The maximum allowable value of the contact series resistance of the keyboard switches is $10k\Omega$

Z2 or Z3 must be connected to V_{DD} to avoid unwanted supply current.

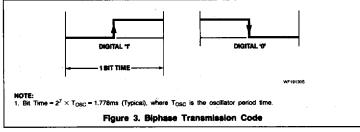


Table 1. Command Matrix X-DR

CODE	X-LINES X									DR-LINES DR							COMMAND BITS C					
İ	0	1	2	3	4	5	6	7	0	1	2	3	4,	. 5	6	7	5.	4	3	2	1	0
0	•								•,		41.		1 .		- 1		0	0	. 0	0	0	0
1										•	1.4						0	0	.0	0	0	1
2	•										•						0	0	0	0	1	0
3	•											•					0	0	0	0	1	1
4	•												•				0	0	0	1	0	0
5	•													•			0	0	0	1	0	1
6	•														•		0	0	0	1	1	0
7	•															•	0	0	0	1	1	1
8		•							•								0	0	1	0	0	0
9	İ	•							1.	•							0	0	1	. 0	. 0	1
10		•							!		•						0	0	1	0	1	0
11		•										•					0	0	1	0	1	1
12		•							ł				•				0	0	1	1	0	0
13		•							1					•			0	0	. 1	1	0	1
14		•													•		0	0	1	-1	1	0
15	L	•			_				L					_		•	0	0	1	1	1	1
16			•						•								0	1	0	0	0	0
17			•							•							0	1	0	0	0	1
18			•						1		•						0	1	0	0	1	0
19			•						1			•					0	1	0	0	1	1
20			•						1				•				0	1	0	1	0	0
21			•											•			0	1	0	1	0	1
22			•												•		0	1	0	1	1	0
23		*	•													•	0	1	0	1	1	1
24				•					•								0	1	1	0	0	0
25				•						•	Sec. 1						0	1	1	0	0	1
26				•					1		•						0	1	1	0	1	0
27				•								•					0	1	1	0	1	1
28				•					1				•				0	1	• 1	1	0	0
29				•					1					•			0	1	1	1	0	1
30				•					1						•		0	1	1	1	1	0
31				•					1							•,	0	1	1	1	1	1

28100 · 网络真正维护 计图片

in the protocol of the second section of the second section of the second section of the second section of the second section of the second section se

Infrared Remote Control Transmitter (RC-5)

Table 1. Command Matrix X-DR (Continued)

CODE	X-LINES X									DR-LINES DR										COMMAND BITS C						
,i-	.0		1	2	3	4		5	6	7	١.	0	1	2	2 .	3	~ 4	5	6	7	5	4	3	2	1	0
32						•	,				Т	•									1	0	Ö	0	0	0
33	1)						•								1 1	0	Ó	0	0	1
34	1					•	•							•	•						1	0	Ó	0	1	0
34 35 36 37	1					•	•									•					1	0	Ö	0	1	1
36							•				.						•				1	0	0	1	0	0
37	†					•)				` I							•			1	0	0	1	0	1
38	1						•				-								•		1	0	Ô	1	1.	0
39						•)														1	.0	Ó	. 1	.1	1
40								•				•						,g			1	0	1	0	0	0
41	ŀ							•					•				•				1	0	1	0	Ö	1
42								•						•	ì						1	0	1	0	1	0
43								•			-		-5			•					1 1	0	1	0	1	1
44	ł							•									•				1	Ô	1	1	0	0
45								•		4	1							•			1	0	1	1	0	1
46	l							•			-								•		1	0	1	1	1	0
. 47								•			4									•	1	0	1	1	1	1
48									•			•						(26)			1	1	0	0	0	0
49	ĺ								•		ı		•								1	1	0	0	0	1
50									•					•	• `						1	1	0	0	1	0
51									•			74.				•					1	1	0	0	1	1
52 53									•			-					•				1	1	0	1	0	0
53									•		- {							•			1	1	0	1	0	1
54									ě										•		1	1	0	1	1	0
55									•											•	1	1.	. 0	1	1	1
56										•		•						or∙			1	1	1	0	0	. 0
57	1									•			•								1	1	1	0	0	1
58										•				•	•						1	1	1	0	1	0
59	1									•						•					1	1	1	0	1	1
60										•	. [•				1	1	1	1	0	0
61										•								•			1	1	1	1	0	1
62										•									•	2.	1	1	1	1	1	0
63	1									•	- 1.									•	. 1	. 1	1	1	1	1

Table 2. System Matrix Z-DR

SYSTEM NO			INES Z			Few L			INES R			***	SYSTEM BITS S						
	0	1	_ 2	3	0	1	2 .	3	4	5 .	6	7	,4	3	2 .,	1	0		
0	•				•								0	0	0	0	0		
1	•					•							0	0	Ó	Ó	1		
2	•						•						0	0	0	1	0		
3	•							•					0	0	0	1	.1		
4	•				ł				•				0	0	1	0	0		
5	•									•			0	0	1	0	1		
6	•										•		0	0	1	1	0		
7	•											•	0	0	1	1	,1		
8		•			•								0	1	0	0	0		
9		•			i	•							0	1	0	0	1		
10		•					•						0	1	0	1	0		
11		•						•					0	1	0	1	1		
12		•							•				0	1	1	0	0		
13		•								•		·	0	1	1	0	1		
14		•									•		0	1	1	1	0		
15		•			1							•	0	1	1	1	1		
16			•		•								1	0	0	0	0		
17			•			•							1	0	0	0	. 1		
18			•				•						1	0	0	1	0		
19			•					•					1	0	0	1	1		
20			, ●						•				1	0	1	0	0		
21	ļ		•							•			1	0	1	0	1		
22	l		•								•		1	0	1	1	0		
23			•								:	•	1	0	1	1	1		
24				•	10								1	1	0	0	0		
25				•		•							1	1	0	0	1		
26				•			•						1	1	0	1	0		
27	1			•				•					1	1	0	1	1		
28	ļ			•					•				1	1	1	0	0		
29				•						•			1	1	1	0	1		
30				•	Į.						•		1	1	1	1	0		
31				.•								•	1	1	1	1	1		

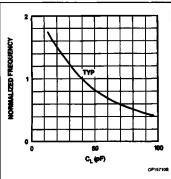
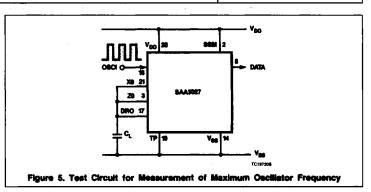



Figure 4. Typical Normalized Input Frequency as a Function of the Load (Keyboard) Capacitance

