TDA7318

DIGITAL CONTROLLED STEREO AUDIO PROCESSOR

- INPUT MULTIPLEXER:
- 4 STEREO INPUTS
- SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTION TO DIFFERENT SOURCES
- INPUT AND OUTPUT FOR EXTERNAL EQUALIZER OR NOISE REDUCTION SYSTEM
- VOLUME CONTROL IN 1.25 dB STEPS
- TREBLE AND BASS CONTROL
- FOUR SPEAKER ATTENUATORS:
- 4 INDEPENDENT SPEAKERS CONTROL IN 1.25dB STEPS FOR BALANCE AND FADER FACILITIES
- INDEPENDENT MUTE FUNCTION
- ALL FUNCTIONS PROGRAMMABLE VIA SERIAL ${ }^{2}$ CBUS

DESCRIPTION

The TDA7318 is a volume, tone (bass and treble) balance (Left/Right) and fader (frontrear) processor for quality audio applications in car radio and $\mathrm{Hi}-\mathrm{Fi}$ systems.

Selectable input gai: is $p^{\text {rovided. Control is accom- }}$ plished by serial $I^{2} \mathrm{C}$ b is microprocessor interface. The AC signa' setting is obtained by resistor networks and switches r mivined with operational amplifiers. Thanks to tie used BIPOLAR/CMOS Tecnology, Low Ditrrtion, Low Noise and Low DC stepping are diaired.

PIN CONNECTION (Top view)

TEST CIRCUIT

THERMAL DATA

Symbol	Description	SO28	DIP28	Unit
$\mathrm{R}_{\mathrm{th} \mathrm{j} \text {-pins }}$	Thermal Resistance Junction-pins	\max	85	65
${ }^{\circ} \mathrm{C} / \mathrm{W}$				

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{S}	Operating Supply Voltage	10.2	V
$\mathrm{~T}_{\mathrm{amb}}$	Operating Ambient Temperature	-40 to 85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{S}	Supply Voltage	6	9	10	V
$\mathrm{~V}_{\mathrm{CL}}$	Max. input signal handling	2			Vrms
THD	Total Harmonic Distortion $\mathrm{V}=1 \mathrm{Vrms} \mathrm{f}=1 \mathrm{KHz}$		0.01	0.1	$\%$
$\mathrm{~S} / \mathrm{N}$	Signal to Noise Ratio		106		dB
$\mathrm{~S}_{\mathrm{C}}$	Channel Separation $\mathrm{f}=1 \mathrm{KHz}$		103		dB
	Volume Control 1.25 dB step	-78.75		0	dB
	Bass and Treble Control 2db step	-14		+14	dB
	Fader and Balance Control 1.25 dB step	-38.75		0	dB
	Input Gain 6.25dB step	0		18.75	dB
	Mute Attenuation		100		dB

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS (refer to the test circuit $T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$, $R_{G}=600 \Omega$, all controls flat $(G=0), f=1 \mathrm{KHz}$ unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
SUPPLY						
 V_{S} Supply Voltage 6 9 10 V Is Supply Current 4 8 11 mA SVR Ripple Rejection 60 85 dB						

INPUT SELECTORS

$\mathrm{R}_{\\|}$	Input Resistance	Input 1, 2, 3, 4	35	50	70	$\mathrm{K} \Omega$
$\mathrm{V}_{\text {CL }}$	Clipping Level		2	2.5		Vrms
SIN	Input Separation (2)		80	100		dB
RL	Output Load resistance	pin 7, 17	2			$\mathrm{K} \Omega$
$\mathrm{G}_{1 \times \text { min }}$	Min. Input Gain		-1	0	1	dB
$\mathrm{G}_{\text {INax }}$	Max. Input Gain		17	18.75	20	dB
Gstep	Step Resolution		5	6.25	7.5	dB
EIN	Input Noise	$\mathrm{G}=18.75 \mathrm{~dB}$		2		$\mu \mathrm{V}$
$V_{D C}$	DC Steps	adjacent gain steps		4	20	mV
		$\mathrm{G}=18.75$ to Mute		4		mV

VOLUME CONTROL

RIV	Input Resistance		20	33	50	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {Range }}$	Control Range		70	75	80	dB
Avmin	Min. Attenuation		-1	0	1	dB
Avmax	Max. Attenuation		70	75	80	dB
Astep	Step Resolution		0.5	1.25	1.75	dB
E_{A}	Attenuation Set Error	$\begin{aligned} & \mathrm{Av}=0 \text { to }-20 \mathrm{~dB} \\ & \mathrm{Av}=-20 \text { to }-60 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline-1.25 \\ -3 \end{gathered}$	0	$\begin{gathered} 1.25 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
E_{T}	Tracking Error				2	dB
$V_{D C}$	DC Steps	adjacent attenuation steps From OdB to Av max		$\begin{gathered} 0 \\ 0.5 \end{gathered}$	$\begin{gathered} 3 \\ 7.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

SPEAKER ATTENUATORS

$C_{\text {range }}$	Control Range		35	37.5	40	dB
$\mathrm{~S}_{\text {STEP }}$	Step Resolution		0.5	1.25	1.75	dB
E_{A}	Attenuation set error				1.5	dB
$\mathrm{~A}_{\text {MUTE }}$	Output Mute Attenuation		80	100		dB
V_{DC}	DC Steps	adjacent att. steps				
from 0 to mute		0	3	mV		
				1	10	mV

BASS CONTROL (1)

Gb	Control Range	Max. Boost/cut	± 12	± 14	± 16	dB
$\mathrm{~B}_{\text {STEP }}$	Step Resolution		1	2	3	dB
R_{B}	Internal Feedback Resistance		34	44	58	$\mathrm{~K} \Omega$

TREBLE CONTROL (1)

Gt	Control Range	Max. Boost/cut	± 13	± 14	± 15	dB
TSTEP $^{\text {Step Resolution }}$		1	2	3	dB	

ELECTRICAL CHARACTERISTICS (continued)

| Symbol | Parameter | Test Condition | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| AUDIO OUTPUTS | | | | | | |
| $V_{\text {OCL }}$ Clipping Level $\mathrm{d}=0.3 \%$ 2 2.5 Vrms
 R_{L} Output Load Resistance 2 $\mathrm{~K} \Omega$
 C_{L} Output Load Capacitance 10 nF
 $\mathrm{R}_{\text {OUT }}$ Output resistance 30 75 120 Ω
 V OUT DC Voltage Level 4.2 4.5 4.8 V | | | | | | |

GENERAL

e_{NO}	Output Noise	$B W=20-20 \mathrm{KHz}$, flat output muted all gains $=0 \mathrm{~dB}$		$\begin{gathered} 2.5 \\ 5 \end{gathered}$	15	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
		A curve all gains $=0 \mathrm{~dB}$		3		$\mu \mathrm{V}$
S/N	Signal to Noise Ratio	all gains $=0 \mathrm{~dB} ; \mathrm{V}_{\mathrm{O}}=1 \mathrm{Vrms}$		106		dB
d	Distortion	$\begin{aligned} A_{V} & =0, V_{I N}=1 \mathrm{Vrms} \\ A_{V} & =-20 \mathrm{~dB} \\ V_{I N} & =1 \mathrm{Vrms} \\ V_{\text {IN }} & =0.3 \mathrm{Vrms} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.09 \\ & 0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.3 \end{aligned}$	\% $\%$ $\%$
Sc	Channel Separation left/right		80	103		dB
	Total Tracking error	$\begin{array}{r} A_{v}=0 \text { to }-20 \mathrm{~dB} \\ -20 \text { to }-60 \mathrm{~dB} \end{array}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

BUS INPUTS

V_{IL}	Input Low Voltage				V	
V_{IH}	Input High Voltage		3			V
I_{N}	Input Current		-5		+5	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage SDA Acknowledge	$\mathrm{I}=1.6 \mathrm{~mA}$		0.4	V	

Notes:
(1) Bass and Treble response see attached diagram (fig.19). The center frequency and quality of the resonance behaviour can be choosen by the external circuitry. A standard first order bass response can be realized by a standard feedback network
(2) The selected input is grounded thru the $2.2 \mu \mathrm{~F}$ capacitor.

Figure 1: Noise vs. Volume/Gain Settings

Figure 2: Signal to Noise Ratio vs. Volume Setting

Figure 3: Distortion \& Noise vs. Frequency

Figure 5: Distortion vs. Load Resistance

Figure 7: Input Separation (L1 \rightarrow L2, L3, L4) vs. Frequency

Figure 4: Distortion \& Noise vs. Frequency

Figure 6: Channel Separation $(\mathrm{L} \rightarrow \mathrm{R})$ vs. Frequency

Figure 8: Supply Voltage Rejection vs. Frequency

Figure 9: Output Clipping Level vs. Supply Voltage

Figure 11: Supply Current vs. Temperature

Figure 13: Typical Tone Response (with the ext. components indicated in the test circuit)

Figure 10: Quiescent Current vs. Supply Voltage

Figure 12: Bass Resistance vs. Temperature

$I^{2} \mathrm{C}$ BUS INTERFACE

Data transmission from microprocessor to the TDA7318 and viceversa takes place thru the 2 wires $I^{2} \mathrm{C}$ BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

Data Validity

As shown in fig. 14, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown in fig. 15 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an ac-
knowledge bit. The MSB is transferred first.

Acknowledge

The master ($\mu \mathrm{P}$) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 16). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.
The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audioprocessor, the $\mu \mathrm{P}$ can use a simplier transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.
This approach of course is less protected from misworking and decreases the noise immunity.

Figure 14: Data Validity on the $\mathrm{I}^{2} \mathrm{CBUS}$

Figure 15: Timing Diagram of $\mathrm{I}^{2} \mathrm{CBUS}$

Figure 16: Acknowledge on the $\mathrm{I}^{2} \mathrm{CBUS}$

SOFTWARE SPECIFICATION

Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte, containing the TDA7318
address (the 8th bit of the byte must be 0). The TDA7318 must always acknowledge at the end of each transmitted byte.
- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

Data Transferred (N-bytes + Acknowledge)
ACK = Acknowledge
S = Start
P = Stop
MAX CLOCK SPEED 100kbits/s

SOFTWARE SPECIFICATION

Chip address

1	0	0	0	1	0	0	0
MSB							

DATA BYTES

MSB						LSB	FUNCTION	
0	0	B2	B1	B0	A2	A1	A0	Volume control
1	1	0	B1	B0	A2	A1	A0	Speaker ATT LR
1	1	1	B1	B0	A2	A1	A0	Speaker ATT RR
1	0	0	B1	B0	A2	A1	A0	Speaker ATT LF
1	0	1	B1	B0	A2	A1	A0	Speaker ATT RF
0	1	0	G1	G0	S2	S1	S0	Audio switch
0	1	1	0	C3	C2	C1	C0	Bass control
0	1	1	1	C3	C2	C1	C0	Treble control

$A x=1.25 d B$ steps; $B x=10 d B$ steps; $C x=2 d B$ steps; $G x=6.25 d B$ steps

SOFTWARE SPECIFICATION (continued)
DATA BYTES (detailed description)
Volume

MSB						$\frac{-\mathrm{SB}}{\mathrm{AO}}$	FUNCTION
00	B2	B1	B0	A2	A1		Volume 1.25 dB steps
				$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 0 \\ -1.25 \\ -2.5 \\ -3.75 \\ -5 \\ -6.25 \\ -7.5 \\ -8.75 \\ \hline \end{gathered}$
$0 \quad 0$	B2	B1	B0	A2	A1	A0	Volume 10dB steps
	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$				$\begin{gathered} 0 \\ -10 \\ -20 \\ -30 \\ -40 \\ -50 \\ -60 \\ -70 \end{gathered}$

For example a volume of -45 dB is given by:
00100100

Speaker Attenuators

For example attenuation of 25 dB on speaker RF is given by:
10110100

Audio Switch

MSB							$\frac{\mathrm{LSB}}{\mathrm{SO}}$	FUNCTION
0	1	0	G1	G0	S2	S1		Audio Switch
					$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Stereo 1 Stereo 2 Stereo 3 Stereo 4 Not allowed Not allowed Not allowed Not allowed
			$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$				$\begin{aligned} & +18.75 \mathrm{~dB} \\ & +12.5 \mathrm{~dB} \\ & +6.25 \mathrm{~dB} \\ & 0 \mathrm{~dB} \\ & \hline \end{aligned}$

For example to select the stereo 2 input with a gain of +12.5 dB the 8 bit string is:
01001001

Bass and Treble

C3 = Sign
For example Bass at -10 dB is obtained by the following 8 bit string:
01100010

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.1		0.3	0.004		0.012
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1			45° (typ.)			
D	17.7		18.1	0.697		0.713
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		16.51			0.65	
F	7.4		7.6	0.291		0.299
L	0.4		1.27	0.016		0.050
S			$8{ }^{\circ}$ (max.)			

OUTLINE AND MECHANICAL DATA

SO28

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1		0.63			0.025	
b		0.45			0.018	
b1	0.23		0.31	0.009		0.012
b2		1.27			0.050	
D			37.34			1.470
e	15.2		16.68	0.598		0.657
e3		33.02			1.300	
F			14.1			0.555
I		4.445			0.175	
L		3.3			0.130	

OUTLINE AND MECHANICAL DATA

DIP28

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved
Purchase of $I^{2} C$ Components of STMicrolectronics, conveys a license under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specifications as defined by Philips.

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

