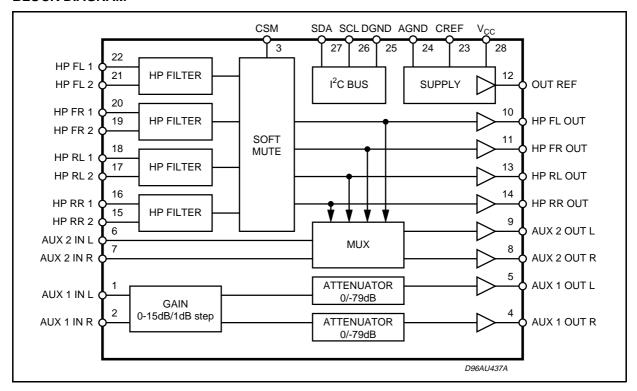


DIGITALLY CONTROLLED AUDIO PROCESSOR WITH LOUDSPEAKERS EQUALIZER

- INPUT
 - FOUR HIGH PASS CHANNELS
 - TWO AUX STEREO CHANNELS
- VOLUME CONTROL IN 1dB STEPS WITH GAIN UP TO 15dB
- SOFT MUTE AND DIRECT MUTE
- FOUR AUXILIARY CHANNELS:
 - TWO SPEAKERS CONTROL IN 1dB STEP
 - TWO CHANNELS MULTIPLEXED WITH THE HIGH PASS CHANNELS
- ALL FUNCTIONS PROGRAMMABLE VIA SE-RIAL I² CBUS

The audioprocessor TDA7435 is an upgrade of the TDA731X audioprocessor family.

Due to a highly linear signal processing, using CMOS-switching techniques instead of standard bipolar multipliers, very low distortion and very low noise are obtained.

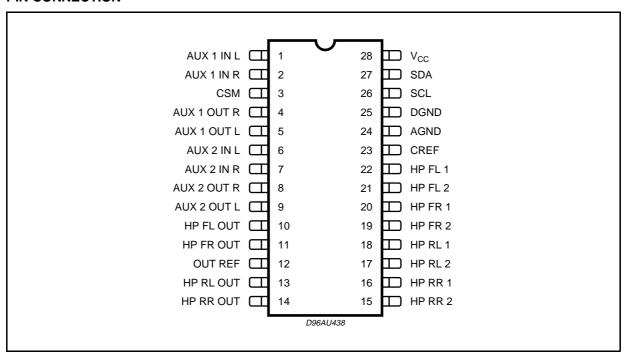

A second programmable high pass filtering provides the loudspeakers equalization.

The soft Mute function is implemented and an be activated in two ways:

- 1 Via serial bus (Mute byte, bit D0)
- 2 Directly on pin 3 through an I/O line of the microcontroller

Very low DC stepping is obtained by use of a BICMOS technology.

BLOCK DIAGRAM



September 2003 1/10

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature	-40 to 85	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

PIN CONNECTION

THERMAL DATA

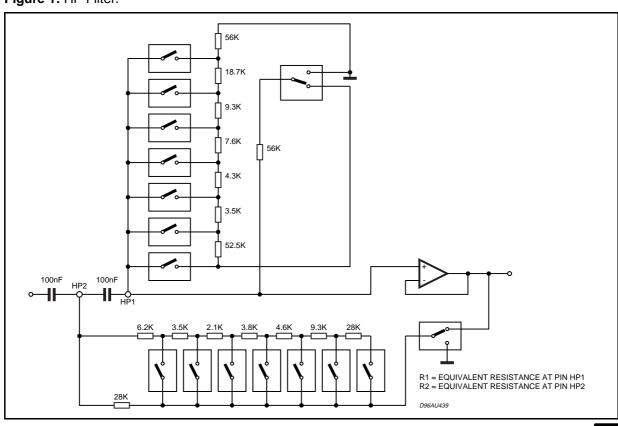
Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-pins	65	°C/W

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	6	9	10.2	V
V_{CL}	Max. input signal handling	2.1	2.6		Vrms
THD	Total Harmonic Distortion V = 1Vrms f = 1KHz		0.01	0.08	%
S/N	Signal to Noise Ratio		106		dB
Sc	Channel Separation f = 1KHz		80		dB
	Input Gain AUX1 1dB step	0		15	dB

2/10

ELECTRICAL CHARACTERISTICS ($V_S = 9V$; $R_L = 10K\Omega$; $R_g = 50\Omega$; $T_{amb} = 25^{\circ}C$; all gains = 0dB; f = 1KHz. Refer to the test circuit, unless otherwise specified.)


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
INPUT STA	AGE: AUX1					
Rı	Input Resistance		24	33	42	ΚΩ
V _{CL}	Clipping Level	d ≤ 0.3%	2.1	2.6		V _{RMS}
Sı	Input Separation		70	80		dB
G _{I MIN}	Minimum Input Gain		-0.75	0	0.75	dB
G _{I MAX}	Maximum Input Gain		13.75	15	16.25	dB
G _{step}	Step Resolution		0.5	1.0	1.5	dB
Ea	Set Error		-1.25	0	1.25	dB
V_{DC}	DC Steps	Adiacent Gain Steps		0.5	10	mV
		G _{IIN} to G _{IMAX}		2.5		mV
SPEAKER	ATTENUATORS - AUX 1					
C _{RANGE}	Control Range			79		dB
A _{step}	Step Resolution	Av = 0 to $-40dB$	0.5	1	1.5	dB
A _{MUTE}	Output Mute Attenuation	Data Word = 1111XXXX	80	105		dB
E _A	Attenuation Set Error	Av = 0 to $-40dB$			1.5	dB
V_{DC}	DC Steps	Adjacent Attenuation Steps		0	3	mV
AUDIO OU	TPUT (Pin 4 - 5, 8 - 9, 10 - 14)					
V_{clip}	Clipping Level	d = 0.3%	2.1	2.6		Vrms
R _L	Output Load Resistance		2			ΚΩ
Ro	Output Impedance		20	30	100	Ω
V_{DC}	DC Voltage Level		3.5	3.8	4.1	V
STAGE: A	UX2					
Rı	Input Resistance		24	33	42	ΚΩ
V _{CL}	Clipping Level		2.1	2.6		Vrms
Sı	Input Separation		70	80		dB
Gi	Gain		-0.75	0	0.75	dB
	Input Mute		80	100		dB
STAGE: H	P FILTER					
R1	Resistance at pin HP1	HIGHPASS BYTE	120	170	220	ΚΩ
R2	Resistance at pin HP2	D3 = 1 XXXX1XXX	0	1		MΩ
V _{CL}	Clipping Level	d ≤ 0.3%	2.1	2.6		Vrms
SOFT MUT	9	**			1	
A _{MUTE}	Mute Attenuation		40	50		dB
T _{DON}	ON Delay Time	Ccsm = 22nF; 0 to -20dB; I = Imax	0.7	1	2	ms
i DON	C. Colay Timo	$C_{CSM} = 22nF$; 0 to -20dB; $I = I_{MIN}$	10	30	50	ms
T _{DOFF}	OFF Current	Vcsm = 0V; I = Imax	60	50	160	μА
I DOFF	o Ganone	V _{CSM} = 0V; I = I _{MIN}	110		210	μΑ
<u> </u>		V GGIVI — G V , I — IIVIIIV	110		210	μπ

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{THSM}	Soft Mute Threshold			2.3		V
R _{INT}	Pullup Resistor (pin 3)	(note 2)		100		ΚΩ
V _{SMH}	(pin 3) Level High		3.5			V
V_{SML}	(pin 3) Level Low	Soft Mute Active			1	V
GENERAL						
V _{CC}	Supply Voltage		6	9	10.2	V
Icc	Supply Current		7	11	15	mA
PSRR	Power Supply Rejection Ratio	f = 1KHz	60	70		dB
e _{NO}	Output Noise	Output Muted (B = 20 to 20kHz flat)		3.5		μV
		All Gains 0dB (B = 20 to 20kHz flat)		5	15	μV
S/N	Signal to Noise Ratio	All Gains = 0dB; $V_0 = 1V_{rms}$		106		dB
S _C	Channel Separation		70	80		dB
d	Distortion	V _{IN} =1V		0.01	0.08	%
BUS INPU	TS					
V _{IL}	Input Low Voltage				1	V
V _{IN}	Input High Voltage		3			V
I _{IN}	Input Current	VIN = 0.4V	-5		5	μΑ
Vo	Output Voltage SDA Acknowledge	I _O = 1.6mA			0.4	V

Note 1: WIN represents the MUTE programming bit pair D_6 , D_5 for the zero crossing window threshold Note 2: Internall pullup resistor to Vs/2; "LOW" = softmute active

Figure 1: HP Filter.

57

I²C BUS INTERFACE

Data transmission from microprocessor to the TDA7435 and viceversa takes place thru the 2 wires I²C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be externally connected).

Data Validity

As shown in fig. 2, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown in fig.3 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. A STOP conditions must be sent before each

Byte Format

START condition.

Every byte transferred to the SDA line must con-

tain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

Acknowledge

The master (μP) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 4). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audio-processor, the μP can use a simplier transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.

This approach of course is less protected from misworking and decreases the noise immunity.

Figure 3: Timing Diagram of I²CBUS

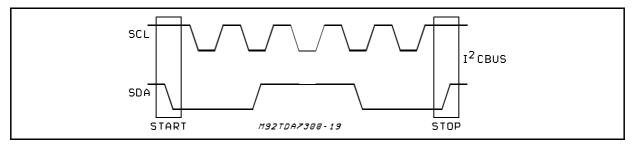
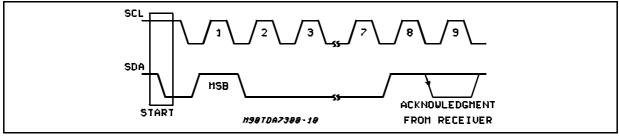



Figure 4: Acknowledge on the I²CBUS

4

SOFTWARE SPECIFICATION

Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte, (the LSB bit determines

read/write transmission)

- A subaddress byte.
- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

CHIP A	DDRESS	SUBADDRESS	DATA 1 to D	ATA n
MSB	LSB MSB	LSB	MSB	LSB
S 1 0 0 0	1 0 1 RW ACK X X	X X A2 A1 A0 A0	d DATA	ACK P

ACK = Acknowledge

S = Start

P = Stop

I = Auto Increment

X = Not used

MAX CLOCK SPEED 500kbits/s

AUTO INCREMENT

If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled **SUBADDRESS** (receive mode)

MSB				LSB	FUNCTION			
Χ	Χ	Х	I	Х	D2	D1	D0	TONCTION
					0	0	0	Mux & Gain
					0	0	1	Mute
					0	1	0	Speaker Attenuator AUX 1 L
					0	1	1	Speaker Attenuator AUX 1 R
					1	0	0	High Pass Filter FL
					1	0	1	High Pass Filter FR
·					1	1	0	High Pass Filter RL
					1	1	1	High Pass Filter RR

TRANSMITTED DATA

Send Mode

MSB							LSB
Х	Χ	Χ	Χ	Χ	SM	Χ	Χ

SM = Soft mute activated (HIGH active)

X = Not used

The transmitted data is automatically updated after each ACK.

Transmission can be repeated without new chipaddress.

DATA BYTE SPECIFICATION

MUX & GAIN

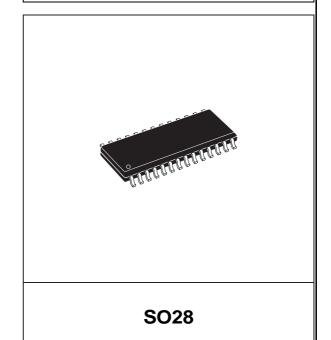
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
			AUX 1 Input Gain					
				0	0	0	0	0dB
				0	0	0	1	1dB
				0	0	1	0	2dB
				0	0	1	1	3dB
				0	1	0	0	4dB
				0	1	0	1	5dB
				0	1	1	0	6dB
				0	1	1	1	7dB
				1	0	0	0	8dB
				1	0	0	1	9dB
				1	0	1	0	10dB
				1	0	1	1	11dB
				1	1	0	0	12dB
				1	1	0	1	13dB
				1	1	1	0	14dB
				1	1	1	1	15dB
								AUX 2 Output Selection
		0	0					High Pass Filter Front
		0	1					High Pass Filter Rear
		1	0					Aux 2 Input
		1	1					Mute

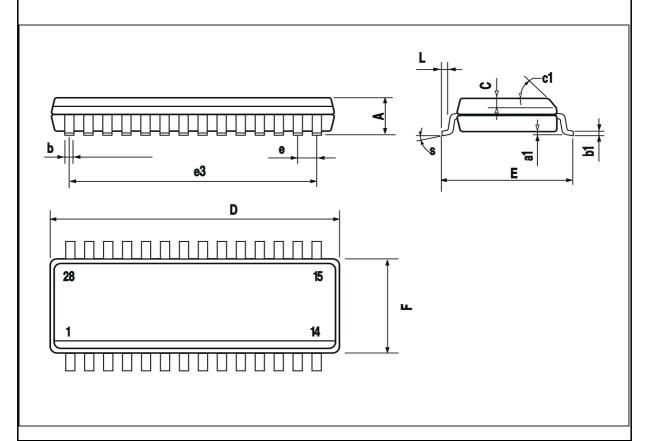
Mute

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
						0	0	Soft mute - SLOW SLOPE
						0	1	Soft mute - FAST SLOPE
						0		Soft mute ON
						1		Soft mute OFF
					0	0		AUX 1 Input Mute Enabled
					1	0		AUX 1 Input Mute Disabled

Speaker

MSB							LSB	AUX 1 L, R
D7	D6	D5	D4	D3	D2	D1	D0	AUX I L, K
								-1dB STEPS
					0	0	0	0dB
					0	0	1	-1dB
					0	1	0	-2dB
					0	1	1	-3dB
					1	0	0	-4dB
					1	0	1	-5dB
					1	1	0	-6dB
					1	1	1	-7dB
								-8dB STEPS
	0	0	0	0				0dB
	0	0	0	1				-8dB
	0	0	1	0				-16dB
	0	0	1	1				-24dB
	0	1	0	0				-32dB
	0	1	0	1				-40dB
	0	1	1	0				-48dB
	0	1	1	1				-56dB
	1	0	0	0				-64dB
	1	0	0	1				-72dB
	1	0	0					
	1	0	1					MUTE
	1	1	1					


HIGH PASS FILTERS


MSB							LSB	- FL, FR, RL, RR
D7	D6	D5	D4	D3	D2	D1	D0	FL, FK, KL, KK
			2nd order HP Filter Mode (C1 = C2 = 100nF)					
				0	0	0	0	$f_c = 40Hz$
				0	0	0	1	$f_c = 60Hz$
				0	0	1	0	$f_c = 80Hz$
				0	0	1	1	f _c = 100Hz
				0	1	0	0	f _c = 120Hz
				0	1	0	1	f _c = 150Hz
				0	1	1	0	f _c = 180Hz
				0	1	1	1	f _c = 220Hz
								First order HP Flat Mode
				1				f _c = 9Hz

47/

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			2.65			0.104
a1	0.1		0.3	0.004		0.012
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
С		0.5			0.020	
c1	45° (typ.)					
D	17.7		18.1	0.697		0.713
Е	10		10.65	0.394		0.419
е		1.27			0.050	
e3		16.51			0.65	
F	7.4		7.6	0.291		0.299
L	0.4		1.27	0.016		0.050
S	8 ° (max.)					

OUTLINE AND MECHANICAL DATA

47/

Purchase of I^2C Components of STMicroelectronics, conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specifications as defined by Philips.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

4