

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LV5680NPVC —

Monolithic Linear IC For Car Audio Systems Multi-Power Supply System IC

Overview

The LV5680NPVC is a multi-power supply system IC that provides four regulator outputs and two high side switches as well as a number of protection functions including overcurrent protection, overvoltage protection and overheat protection. It is an optimal power supply IC for car audio and car entertainment systems and similar products.

Features

- Four regulator output systems
 - For microcontroller: 5.0V output voltage, 200mA maximum output current
 - For CD drive: 8.0V output voltage, 1300mA maximum output current

For illumination: 8 to 12V output voltage (output can be set with external resistors), 300mA maximum output current For audio systems: 8 to 9V output voltage (output voltage can be set with external resistors), 300mA maximum output current

• Two V_{CC}-linked high side switch systems

EXT: 350mA maximum output current, 0.5V voltage difference between input and output.

- ANT: 300mA maximum output current, 0.5V voltage difference between input and output.
- Two VDD 5V-linked high side switch systems

SW5V: 200mA maximum output current, 0.2V voltage difference between input and output. ACC (accessory voltage detection output): 100mA maximum output current, 0.2V voltage difference between input

and output.

- Overcurrent protection function
- Overvoltage protection function, typ 21V (excluding VDD 5V output)
- Overheat protection function, typ 175°C
- On-chip accessory voltage detection circuit
- P-channel LDMOS used for power output block

(Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under over current protection range or thermal shutdown state may degrade the IC's reliability and eventually damage the IC.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Conditions	Conditions		Ratings	Unit
Supply voltage	V _{CC} max				V
Peak supply voltage	V _{CC} peak	See below for the waveform applied.		50	V
Allowable Power dissipation	Pd max	Independent IC	Ta ≤ 25°C	1.5	W
		AI heat sink *		5.6	W
		With an infinity heat sink		32.5	W
Junction temperature	Tj max			150	°C
Operating ambient temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +150	°C

* : When the Aluminum heat sink (50mm \times 50mm \times 1.5mm) is used

Allowable Operating range at $Ta = 25^{\circ}C$

Parameter	Conditions	Ratings	Unit
Operating supply voltage 1	V _{DD} output, SW output, ACC output	7.5 to 16	V
Operating supply voltage 2	ILM output at 10V	12 to 16	V
	ILM output at 8V	10 to 16	V
Operating supply voltage 3	Audio output at 9V	10 to 16	V
Operating supply voltage 4	CD output (CD output current = 1.3A)	10.5 to 16	V
	CD output (CD output current \leq 1A)	10 to 16	V

Electrical Characteristics at $V_{CC} = 14.4V$, $Ta = 25^{\circ}C(*6)$

Parameter	Symbol	Conditions		Ratings		Unit
Parameter	Symbol	Conditions	min	typ	max	Uni
Current drain	ICC	V_{DD} no load, CTRL1/2 = $[L/L]$, ACC = 0V		400	800	μA
CTRL1 Input						
Low input voltage	V _{IL} 1		0		0.5	V
M1 input voltage	V _{IM1} 1		0.8	1.1	1.4	V
M2 input voltage	V _{IM2} 1		1.9	2.2	2.5	V
High input voltage	V _{IH} 1		2.9	3.3	5.5	V
Input impedance	R _{IH} 1		350	500	650	kΩ
CTRL2 Input	·					
Low input voltage	V _{IL} 2		0		0.5	V
M input voltage	V _{IM} 2		1.1	1.65	2.1	V
High input voltage	V _{IH} 2		2.5	3.3	5.5	V
Input impedance	R _{IH} 2		350	500	650	kΩ
VDD 5V Output *1		The V _{DD} 5V output sup	plies the outpu	it currents of	SW 5V and	ACC 5
Output voltage 1	V _O 1	I _O 1 = 200mA, I _O 7, I _O 8 = 0A	4.75	5.0	5.25	V
Output voltage 2	V _O 1'	I _O 1 = 200mA, I _O 7 = 200mA, I _O 8 = 100mA	4.75	5.0	5.25	V
Output total current	lto1	$V_01 \ge 4.75V$, Ito1 = I_01+I_07+I_08	500			mA
Line regulation	ΔV _{OLN} 1	$7.5V < V_{CC} < 16V, I_O1 = 200mA *2$		30	90	mV
Load regulation	ΔV_{OLD} 1	1mA < I _O 1 < 200mA *2		70	150	mV
Dropout voltage 1	V _{DROP} 1	I _O 1 = 200mA *2		1.0	1.5	V
Dropout voltage 2	VDROP1'	I _O 1 = 100mA *2		0.7	1.05	V
Dropout voltage 3	VDROP1"	I _O 1+I _O 7+I _O 8 = 500mA		2.5	3.75	V
Ripple rejection	R _{REJ} 1	f = 120Hz, I _O 1 = 200mA *2	40	50		dB
CD Output ; CTRL2 = [H]	•	•	· ·			
Output voltage	V _O 2	I _O 2 = 1000mA	7.6	8.0	8.4	V
Output current	I _O 2	$V_{O}2 \ge 7.6V$	1300			mA
Line regulation	ΔV_{OLN}^2	$10.5V < V_{CC} < 16V, I_{O}2 = 1000mA$		50	100	mV

*1 : The V_{DD} 5V output also supplies the output currents of SW 5V and ACC 5V. Therefore, the current supply capability of the V_{DD} 5V output and its other electrical characteristics are affected by the output statuses of SW 5V and ACC 5V.

 $^{\ast}2$: SW 5V and ACC 5V are not subject to a load.

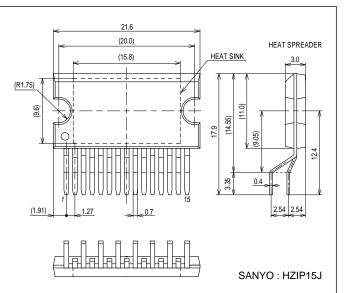
LV5680NPVC

Parameter	Symbol	Conditions		Ratings		Unit
Farameter	Symbol	Conditions	min	typ	max	Unit
Load regulation	$\Delta V_{OLD}2$	$10mA < I_{O}2 < 1000mA$		100	200	mV
Dropout voltage 1	V _{DROP} 2	I _O 2 = 1000mA		1.0	1.5	V
Dropout voltage 2	V _{DROP} 2'	I _O 2 = 500mA		0.5	0.75	V
Ripple rejection	R _{REJ} 2	f = 120Hz, I _O 2 = 1000mA	40	50		dB
AUDIO (8-9V) Output ; CTRL2 =	Гм」					
AUDIO_F pin voltage	V _I 3		1.222	1.260	1.298	V
AUDIO_F pin inflow current	I _{IN} 3		-1		1	μA
AUDIO output voltage 1	V _O 3	$I_{O}3 = 200$ mA, R2 = 30 k Ω , R3 = 5.6 k Ω *3	7.65	8.0	8.35	V
AUDIO output voltage 2	V _O 3'	$I_03 = 200$ mA, R2 = $27k\Omega$, R3 = $4.7k\Omega$ *3	8.13	8.5	8.87	V
AUDIO output voltage 3	V _O 3"	$I_{O}3 = 200$ mA, R2 = 24k Ω , R3 = 3.9k Ω *3	8.6	9.0	9.4	V
AUDIO output current	I _O 3		300			mA
Line regulation	$\Delta V_{OLN}3$	$10V < V_{CC} < 16V, I_O3 = 200mA$		30	90	mV
Load regulation	$\Delta V_{OLD}3$	$1mA < I_{O}3 < 200mA$		70	150	mV
Dropout voltage 1	V _{DROP} 3	I _O 3 = 200mA		0.3	0.45	V
Dropout voltage 2	V _{DROP} 3'	I _O 3 = 100mA		0.15	0.23	V
Ripple rejection	R _{REJ} 3	f = 120Hz, I _O 3 = 200mA	40	50		dB
ILM (8-12V) Output ; CTRL1 = [M	11]					
ILM_F pin voltage	V _I 4		1.222	1.260	1.298	V
ILM output voltage 1	V _O 4	I _O 4 = 200mA	11.4	12.0	12.6	V
ILM output voltage 2	V _O 4'	I _O 4 = 200mA, R1 = 270kΩ *4	8.5	10.0	11.5	V
ILM output voltage 3	V _O 4"	I _O 4 = 200mA, R1 = 100kΩ *4	6.8	8.0	9.2	V
ILM output current	I _O 4	R1 = 270kΩ	300			mA
Line regulation	ΔV_{OLN}^4	$12V < V_{CC} < 16V, I_04 = 200mA, R1 = 270k\Omega$		30	90	mV
Load regulation	$\Delta V_{OLD}4$	$1mA < I_{O}4 < 200mA$		70	150	mV
Dropout voltage 1	VDROP ⁴	I _O 4 = 200mA		0.7	1.05	V
Dropout voltage 2	VDROP4'	I _O 4 = 100mA		0.35	0.53	V
Ripple rejection	R _{REJ} 4	f = 120Hz, I _O 4 = 200mA	40	50		dB
Remoto (EXT) ; CTRL1 = [M2]						
Output voltage	V _O 5	I _O 5 = 350mA	V _{CC} -1.0	V _{CC} -0.5		V
Output current	IO2	$V_{O5} \ge V_{CC}$ -1.0	350			mA
ANT remoto ; CTRL1 = [H]						
Output voltage	V _O 6	I _O 6 = 300mA	V _{CC} -1.0	V _{CC} -0.5		V
Output current	IO6	$V_{O6} \ge V_{CC}$ -1.0	300			mA
SW 5V Output ; CTRL2 = ⌈M⌋						
Output voltage 1	V _O 7	I _O 7 = 1mA, I _O 1, I _O 8 = 0A *5	V _O 1-0.25	V _O 1		V
Output voltage 2	V ₀ 7'	I _O 7 = 200mA, I _O 1, I _O 8 = 0A *5	V _O 1-0.45	V _O 1-0.2		V
Output current	1 ₀ 7	$V_{O}7 \ge 4.55$	200			mA
ACC Detection ; ACC Integratio	n 5V output					
ACC detection voltage	V _{TH} 8		2.8	3.0	3.2	V
Hysteresis width	V _{HIS} 8		0.2	0.3	0.4	V
Input impedance	Z18	(Pull-down resistance internal)	42	60	78	kΩ
ACC output voltage 1	V _O 8	I _O 8 = 0.5mA, I _O 1, I _O 7 = 0A *5	V _O 1-0.25	V _O 1		V
	1		1			
ACC output voltage 2	V _O 8'	I _O 8 = 100mA, I _O 1, I _O 7 = 0A *5	V _O 1-0.45	V _O 1-0.2		V

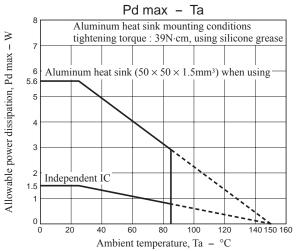
*3 : When a component with a resistance accuracy of $\pm 1\%$ is used

<Reference> When a component with a resistance accuracy of $\pm 0.5\%$ is used, V_O3" is 8.67V $\leq 9.0V \leq 9.33V.$

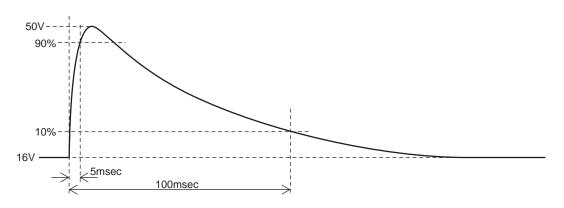
*4 : When a component with a resistance accuracy of $\pm 1\%$ is used


The absolute accuracy of the internal resistance is $\pm 15\%$.

*5 : Since the SW 5V and ACC 5V are output from V_{DD} 5V through the SW, the voltage drops by an amount equivalent to the ON resistance of the SW.


*6: The entire specification has been defined based on the tests performed under the conditions where Tj and Ta (=25°C) are almost equal. There tests were performed with pulse load to minimize the increase of junction temperature (Tj).

Package Dimensions





• Allowable power dissipation derating curve

• Waveform applied during surge test

Pin Function

Pin No.	Pin name	Description	Equivalent Circuit
1	ILM	ILM output pin ON when CTRL1 = M1, M2, H 12.0V/300mA	
2	ILM_F	ILM output voltage adjustment pin	$2 \qquad \qquad$

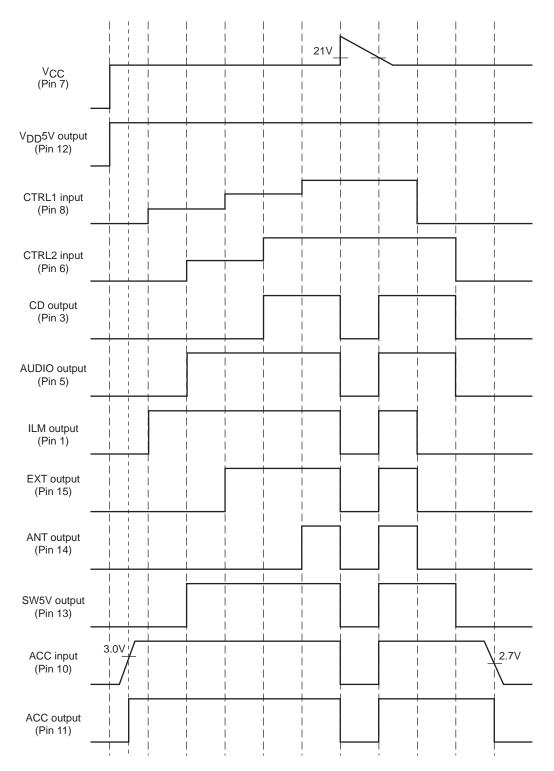
Continued on next page.

LV5680NPVC

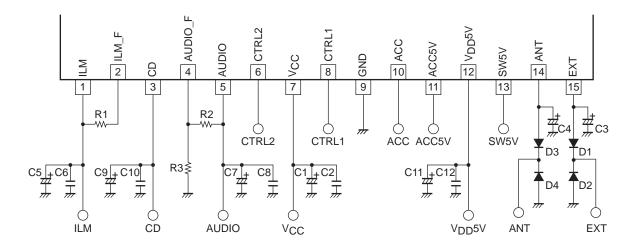
Pin No.	om preceding pa	Description	Equivalent Circuit
3	CD	CD output pin ON when CTRL2 = M, H 8.0V/1.3A	$\begin{array}{c} \hline \\ \hline $
4	AUDIO_F	AUIDO output voltage adjustment pin	
5	AUDIO	AUDIO output pin ON when CTRL2 = M, H	
6	CTRL2	CTRL2 input pin three-value input	
7	V _{CC}	Supply terminal	
8	CTRL1	CTRL1 input pin four-value input	

Continued on next page.

LV5680NPVC


Continued fi	rom preceding pa	ge.	
Pin No.	Pin name	Description	Equivalent Circuit
10	ACC	Accessory input	$\begin{array}{c} \hline 7 \\ \hline 45k\Omega \\ \hline 10 \\ \hline 45k\Omega \\ \hline 10 \\ \hline 15k\Omega \\ \hline 9 \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
11	ACC5V	Accessory detection output ON when ACC > 3V	
12	V _{DD} 5V	V _{DD} 5V output pin 5.0V/200mA	
13	SW5V	SW5V output pin ON when CTRL2 = M, H	13
14	ANT	ANT output pin ON when CTRL1 = H V _{CC} -0.5V/300mA	7 VCC I I I<
15	EXT	EXT output pin ON when CTRL1 = M2, H V _{CC} -0.5V/350mA	

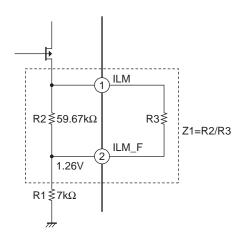
CTRL Pin Output Truth Table


CTRL1	ANT	EXT	ILM
L	OFF	OFF	OFF
M1	OFF	OFF	ON
M2	OFF	ON	ON
Н	ON	ON	ON

CTRL2	CD	AUDIO	SW5
L	OFF	OFF	OFF
М	OFF	ON	ON
Н	ON	ON	ON

Timing Chart

Recommended Operation Circuit


Peripheral parts list

Name of part	Description	Recommended value	Remarks
C1	Power supply bypass capacitor	100µF or more	These capacitors must be placed near
C2	Oscillation prevention capacitor	0.22µF or more	the V_{CC} and GND pins.
C3	EXT output stabilization capacitor	2.2µF or more	
C4	ANT output stabilization capacitor	2.2µF or more	
C5, C7, C9, C11	Output stabilization capacitor	4.7µF or more	Electrolytic capacitor *
C6, C8, C10, C12	Output stabilization capacitor	0.22µF or more	Ceramic capacitor *
R1	Resistor for ILM voltage adjustment	ILM output voltage R1:without = 12.0V :270k Ω = 10.0V :100k Ω = 8.0V	A resistor with resistance accuracy as low as less than $\pm1\%$ must be used.
R2, R3	Resistor for AUDIO voltage setting	AUDIO output voltage R2/R3:30kΩ/5.6kΩ = 8.0V :27kΩ/4.7kΩ = 8.5V :24kΩ/3.9kΩ = 9.0V	A resistor with resistance accuracy as low as less than \pm 1% must be used.
D1, D2, D3, D4	Diode for internal device breakdown protection		

* : In order to stabilize the regulator outputs, it is recommended that the electrolytic capacitor and ceramic capacitor be connected in parallel.

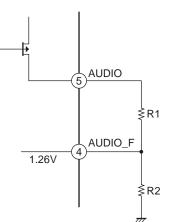
Furthermore, the values listed above do not guarantee stabilization during the overcurrent protection operations of the regulator, so oscillation may occur during an overcurrent protection operation.

• ILM output voltage setting method

The ILM_F voltage is determined by the internal band gap voltage of the IC (typ = 1.26V).

Formula for ILM voltage calculation

$$Z_{1} = R_{2} / / R_{3} = \frac{R_{2} \cdot R_{3}}{R_{2} + R_{3}}$$
$$ILM = \frac{1.26[V]}{R_{1}} \times Z_{1} + 1.26[V]$$
$$Z_{1} = \frac{(ILM - 1.26) \cdot R_{1}}{1.26} \qquad R_{3} = \frac{R_{2} \cdot Z_{1}}{R_{2} - Z_{1}}$$


Example : ILM = 9V setting method

$$Z_{1} = \frac{(9V - 1.26V) \cdot 7k\Omega}{1.26V} \cong 43k\Omega$$
$$R_{3} = \frac{59.67k\Omega \cdot 43k\Omega}{59.67k\Omega - 43k\Omega} \cong 153.9k\Omega \rightarrow 150k\Omega$$

When R3 = 150k, the ILM output voltage will be as follows:

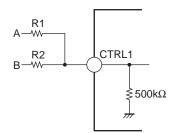
$$Z_1' = \frac{59.67k\Omega \cdot 150k\Omega}{59.67k\Omega + 150k\Omega} \cong 42.69k\Omega$$
$$ILM = \frac{1.26V}{7k\Omega} \times 42.69k\Omega + 1.26V \cong \boxed{8.94V}$$

• AUDIO output voltage setting method

The AUDIO_F voltage is determined by the internal band gap voltage of the IC (typ = 1.26V).

Formula for AUDIO voltage calculation

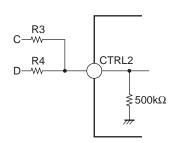
$$AUDIO = \frac{1.26[V]}{R_2} \times R_1 + 1.26[V]$$
$$\frac{R_1}{R_2} = \frac{(AUDIO - 1.26)}{1.26}$$


The circuit must be designed in such a way that the R1:R2 ratio satisfies the formula given above for the AUDIO voltage that has been set.

Example : AUDIO = 8.5V setting method

$$\frac{R_1}{R_2} = \frac{(8.5 - 1.26)}{1.26} \cong 5.75$$
$$\frac{R_1}{R_2} = \frac{27k\Omega}{4.7k\Omega} \cong 5.74$$
$$AUDIO = 1.26V \times 5.74 + 1.26V \cong 8.49V$$

Note : In the above, the typical values are given in all instances for the values used and, as such, they will vary due to the effects of production-related variations of the IC and external resistors.


CTRL1 Application Circuit Example

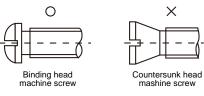
(1)	(1) 3.3V input: $R1 = 4.7k\Omega$, $R2 = 10k\Omega$			
	۸	В	CTRL1	

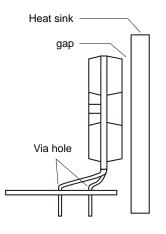
A	В	CTRL1
0V	0V	0V
0V	3.3V	1.05V
3.3V	0V	2.23V
3.3V	3.3V	3.20V

CTRL2 Application Circuit Example

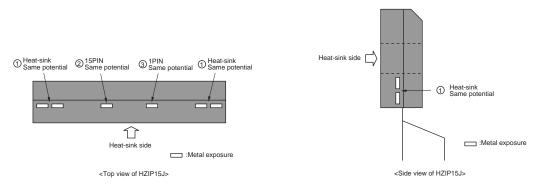
(1) 3.3V input: $R3 = R4 = 4.7k\Omega$

1		
А	В	CTRL2
0V	0V	0V
0V	3.3V	1.61V
3.3V	0V	1.61V
3.3V	3.3V	3.29V

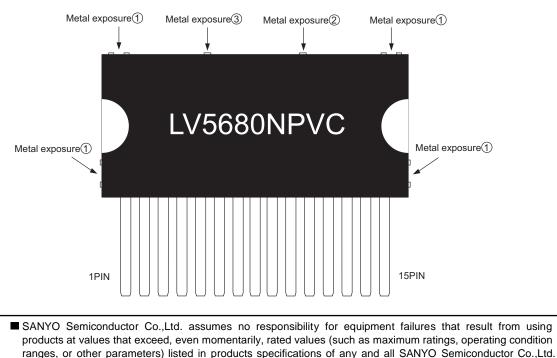

HZIP15J Heat sink attachment


Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

- a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.
- b. Heat sink attachment
 - \cdot Use flat-head screws to attach heat sinks.
 - \cdot Use also washer to protect the package.
 - · Use tightening torques in the ranges 39-59Ncm(4-6kgcm).
 - If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
 - Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - Take care a position of via hole.
 - \cdot Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
 - · Verify that there are no press burrs or screw-hole burrs on the heat sink.
 - · Warping in heat sinks and printed circuit boards must be no more than
 - 0.05 mm between screw holes, for either concave or convex warping.
 - · Twisting must be limited to under 0.05 mm.
 - \cdot Heat sink and semiconductor device are mounted in parallel.
 - Take care of electric or compressed air drivers
 - \cdot The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.
- c. Silicone grease
 - \cdot Spread the silicone grease evenly when mounting heat sinks.
 - · Sanyo recommends YG-6260 (Momentive Performance Materials Japan LLC)
- d. Mount
 - · First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
 - \cdot When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - \cdot Take care not to allow the device to ride onto the jig or positioning dowel.
 - · Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.
- f. Heat sink screw holes
 - · Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
 - \cdot When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
 - \cdot When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.


Caution for implementing LV5680P to a system board

The package of LV5680P is HZIP15J which has some metal exposures other than connection pins and heatsink as shown in the diagram below. The electrical potentials of (2) and (3) are the same as those of pin 15 and pin 1, respectively. (2) (=pin 15) is the V_{CC} pin and (3) (=pin 1) is the ILM (regulator) output pin. When you implement the IC to the set board, make sure that the bolts and the heatsink are out of touch from (2) and (3). If the metal exposures touch the bolts which has the same electrical potential with GND, GND short occurs in ILM output and V_{CC}. The exposures of (1) are connected to heatsink which has the same electrical potential with substrate of the IC chip (GND). Therefore, (1) and GND electrical potential of the set board can connect each other.



• HZIP15J outline

• Frame diagram (LV5680NPVC) *In the system power supply other than LV5680NPVC, pin assignment may differ.

- products described or contained herein.
 Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of May, 2012. Specifications and information herein are subject to change without notice.