5-channel BTL driver for CD players BA6796FP

The BA6796FP, an IC designed for CD and MD players, has a 5-channel BTL power driver and a standard operational amplifier. The spindle and tray driver share a single output buffer, and are specified with a control pin. In addition, the internal level shift circuit reduces the number of attached components.

Applications

CD players, CD-ROM drives, MD players and other optical disc devices

Features

- 1) 5-channel BTL driver in a 28-pin HSOP package, allowing for application miniaturization.
- 2) The five drivers are turned on and off according to control pin logic combinations.
- The tray driver operates even when the servo power supply drops.
- 4) Internal thermal shutdown circuit.
- 5) Gain is adjustable with an attached resistor.
- 6) Internal standard operational amplifier.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7*	w
Operating temperature	Topr	-35~+85	°C
Storage temperature	Tstg	-55~+150	Ĉ

* When mounted on a 50 \times 50 \times 1 mm paper phenol board

Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.8	—	12	V

Block diagram

Pin descriptions

Pin No.	Pin name	Function
1	OPOUT	Operational amplifier
2	CH4—IN	Channel 4 input
3	CH4—IN'	Channel 4 gain adjustment input
4	CTL1	Control 1 input
5	CTL2	Control 2 input
6	FWD	Tray forward input
7	REV	Tray reverse input
8	TRAY-IN	Tray input
9	GND	Substrate ground
10	CH5-OUT-	Tray negative output
11	COM-OUT	Tray positive output/channel 4 negative output
12	CH4-OUT+	Channel 4 positive output
13	CH3-OUT+	Channel 3 positive output
14	CH3-OUT-	Channel 3 negative output
15	CH2-OUT-	Channel 2 negative output
16	CH2-OUT+	Channel 2 positive output
17	CH1-OUT-	Channel 1 negative output
18	CH1-OUT+	Channel 1 positive output
19	CH1-IN	Channel 1 input
20	CH1-IN'	Channel 1 gain adjustment input
21	Vcc	Vcc
22	CH2-IN	Channel 2 input
23	CH2-IN'	Channel 2 gain adjustment input
24	CH3—IN	Channel 3 input
25	CH3—IN'	Channel 3 gain adjustment input
26	VREF-IN	Bias amplifier input
27	OPIN+	Operational amplifier non-inverted input
28	OPIN-	Operational amplifier inverted input

* Positive and negative output of the driver is relative to the polarity of the input pins. (For example, pin 18 outputs the high level when the high level is input to pin 19.)

Input / output circuits

ROHM

\blacksquare Electrical characteristics (unless otherwise noted, $Ta = 25$ C, $Vcc = 6V$, $T = TKHZ$, $KL = 6\Omega$)								
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Quiescent current dissipation	lcc	8.5	11.5	14.5	mA	No load		
Output offset voltage 1	Voo	-40	_	40	mV	Channel 1~Channel 3		
Output offset voltage 2	Voo	-100	-	100	mV	Channel 4		
Max. output pin voltage 1	VOHD1	3.7	4.3	_	v	VIN=VCC		
Max. output pin voltage 2	Vohd2	_	-4.3	-3.7	V	V _{IN} =GND		
Closed loop voltage gain 1	Gvc1	6.5	8.0	9.5	dB	VIN=0.1Vrms, 1kHz (excluding channel 4)		
Closed loop voltage gain 2	Gvc2	11.5	14.0	16.5	dB	VIN=0.1Vrms, 1kHz (CH4)		
Ripple rejection rate	RR	-	60	-	dB	V _{IN} =0.1V _{rms} , 100Hz		
Slew rate	SR	-	2.0	-	V/µs	100 Hz square wave, 3 VP-P output		
〈Tray driver〉								
Output voltage F	Vof	2.5	3.0	3.5	V	Pin 8 voltage=3 V		
Output voltage R	Vor	-3.5	-3.0	-2.5	V	Pin 8 voltage=3 V		
Output voltage range F	Vome	3.7	4.3	-	V	Pin 8 voltage=5 V		
Output voltage range R	Vomr	-	-4.3	-3.7	V	Pin 8 voltage=5 V		
Load regulation F	△VFI	—	250	500	mV	I∟=100~400 mA, pin 8 voltage=2.5 V		
Load regulation R	△VRI	—	250	500	mV	I∟=100~400 mA, pin 8 voltage=2.5 V		
Line regulation F	$\triangle V_{FL}$	—	300	600	mV	Vcc=5V~12V		
Line regulation R	$ riangle V_{\sf RL}$	—	300	600	mV	Vcc=5V~12V		
Output offset voltage	Vool	-50	—	50	mV	Braked, output voltage		
〈Logic: CTL1, CTL2, FWD, REV〉								
Input high level voltage	Vін	2.0	—	8.0	V	Maximum value up to Vcc		
Input low level voltage	Vı∟	-0.3	_	0.5	V			
Input high level current	Ін	—	—	500	μA			
Input low level current	١ı	_	_	500	μA			
$\langle Operational \ amplifier angle$								
Offset voltage	Vofop	-5	0	5	mV			
Input bias current	BIAS	-	-	300	nA			
Output high level voltage	Vонор	6.0	-	-	V			
Output low level voltage	Volop	-	-	1.8	v			
Output drive current (source)	loso	10	40	-	mA	50Ω at GND		
Output drive current (sink)	losi	10	50	-	mA	50Ω at Vcc		
Open loop voltage gain	Gvo	-	78	-	dB	V _{IN} =-75dBV, 1kHz		
Slew rate	SROP	_	1	-	V/µs	100 Hz square wave, 4 VP-P output		
Ripple rejection	RRop	_	65	_	dB	VIN=0.1Vrms, 100Hz		
Common mode rejection ratio	CMRR	_	84	_	dB	VIN=0.1Vrms, 1kHz		

•Electrical characteristics (unless otherwise noted, Ta = 25° C, Vcc = 8V, f = 1kHz, RL = 8 Ω)

ONot designed for radiation resistance.

Measurement circuit

Fig.1

Measruement circuit switch table

Parameter	Symbol	RL	RL'	CH1IN	CH2IN	I CH3IN	CH4IN	TRAY	NF	IB	OPIN	OPI	GVO	RIP
Quiescent current dissipation	lcc	0	FF	OFF		OFF	SHORT	ON	OPEN	OPEN	OFF	NORM		
Output offset voltage	Voo	ON DC (BIAS)		Ļ	ţ	Ļ	Ļ	Ļ	Ļ	Ļ				
Max. output pin voltage 1	VOHD1		ţ		DC ((GND)		Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Max. output pin voltage 2	VOHD2		ţ		DC ((Vcc)		Ļ	Ļ	Ļ	Ļ	ţ	ţ	Ļ
Closed loop voltage gain 1	Gvc1		Ļ		(0.1V	^{rms} , 1kHz	<u>z</u>)	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Closed loop voltage gain 2	Gvc2		ţ			Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ
Ripple rejection rate	RR		ţ		DC (BIAS)		Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	RIP
Slew rate	SR		ţ	AC (100 Hz	square w	ave)	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	NORM
<pre></pre>														
Output voltage F	Vof	C	N		DC (BIAS)		ON	SHORT	ON	OPEN	OPEN	OFF	NORM
Output voltage R	Vor	,	ţ			Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ
Output voltage range F	Vome		ţ			Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ
Output voltage range R	Vomr		ţ			Ļ		ţ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Load regulation F	∆Vfi	ON	OFF			Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Load regulation R	∆VRI	ţ	Ļ			Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Line regulation F	∆V _{FL}	C	N	↓			Ļ	Ļ	Ļ	Ļ	ţ	ţ	Ļ	
Line regulation R	∆Vrl	Ļ				Ļ		Ļ	Ļ	Ļ	Ļ	ţ	ţ	Ļ
Output offset voltage	Vool		ţ			Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
(Logic: CTL1, CTL2, FWD, RE	V>													
Input high level voltage	Ин	0	FF		C)FF		OFF	SHORT	ON	OPEN	OPEN	OFF	NORM
Input low level voltage	VIL		ţ			Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Input high level current	Ін	Ļ				Ļ		Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Input low level current	lı.	t t				ţ		Ļ	Ļ	Ļ	ţ	ţ	ţ	Ļ
(Operational amplifier)														
Offset voltage	VOFOP	0	FF		C)FF		OFF	SHORT	ON	OPEN	OPEN	OFF	NORM
Input bias current	BIAS		Ļ			Ļ		Ļ	1M	OFF	Ļ	Ļ	ţ	Ļ
Output high level voltage	Vонор		ţ	↓ ↓			Ļ	10k	ON	GND	Ļ	ţ	Ļ	
Output low level voltage	Volop	,	ţ	t t		Ļ		Ļ	Ļ	Ļ	Vcc	t	Ļ	Ļ
Output drive current (source)	loso	,	ţ			Ļ		Ļ	SHORT	Ļ	OPEN	GND	Ļ	Ļ
Output drive current (sink)	losi	,	ţ	+			Ļ	Ļ	Ļ	Ļ	Vcc	Ļ	Ļ	
Open loop voltage gain	Gvo		ţ	÷			Ļ	10k	Ļ	Ļ	OPEN	ON	Ļ	
Slew rate	SROP		ţ			Ļ		Ļ	SHORT	OFF	Ļ	Ļ	OFF	Ļ
Ripple rejection	RROP		ţ			Ļ		Ļ	Ļ	ON	Ļ	ţ	ţ	RIP
Common mode rejection ratio	Смвв	↓ ↓				Ļ		Ļ	1M	OFF	Ļ	Ļ	ţ	NORM

 $\pm 1~$ Switch SG is on only when measuring the operational amplifier's SRop.

*2 Switch CMRR is on only when measuring the operational amplifier's CMRR.

Function description

CTL and CTL2

CTL1	CTL2	CH1	CH2	CH3	CH4	CH5
L	L		ON			
L	н		0	rr.		ON
н	L		0	N		OFF
н	н	0	FF	ON	OFF	ON

High-impedance output when off.

F and R (channel 5 control enabled only when channel 5 is on)

F	R	Output mode					
L	L	High impedance					
L	Н	Reverse					
н	L	Forward					
н	Н	Brake					

Application example

Fig. 2

Operation notes

Setting the tray motor driver voltage (forward mode) (1)

Fig. 3

Note: The tray driver output voltage will not exceed the power supply's maximum output voltage, even if set above this maximum voltage (refer to the following page). The example above applies only when setting below the maximum output voltage. Maximum output voltage for the power supply can be output by pulling up the tray input pin (pin 8), or by connecting it to Vcc.

Mute functions (2)

Mute function	Muted channels
Thermal shutdown	All channels
Muting during supply voltage drop	All channels
Muting during bias voltage drop	CH1-CH4

«Thermal shutdown»

The output current is muted when the chip temperature exceeds 175°C (typically).

«Supply voltage drop muting»

The internal circuits turn off when the supply voltage drops below 4.3V (typically), and turn on again when it rises above 4.5V (typically).

≪Bias drop muting≫

Muting also occurs when the bias pin voltage (26 pin) is lowered below 1.4V (typically). Be sure the voltage stays between 1.6V and 6.5V during normal operation.

(3) Muting occurs during thermal shutdown and when the supply voltage or bias pin voltage drops. In each case, only the driver is muted. The output pin voltage during muting is the internal bias voltage, roughly Vcc-VF / 2.

(4) Attach a 0.1µF bypass capacitor to the power supply, at the base of the IC.

(5) Connect the radiating fin to an external ground.

Fig. 4 Thermal derating curve

Fig. 5 CH1-CH-3 Driver I / O characteristics (when variable supply voltage changes)

Fig. 6 CH4 Driver I / O characteristics (when variable supply voltage changes)

Electrical characteristic curves

Fig. 7 CH1-CH3 Driver I / O characteristics

(when load changes)

Fig. 9 Tray driver output characteristics

Fig. 8 CH4 Driver I / O characteristics

Fig. 10 Power supply voltage vs. HIGH output / LOW output voltage

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.

• Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by

- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.