
BD645, BD647, BD649, BD651 NPN SILICON POWER DARLINGTONS

BOURNS®

- RoHS compliant*
- Designed for Complementary Use with BD646, BD648, BD650 and BD652
- 62.5 W at 25°C Case Temperature
- 8 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

This series is currently available, but not recommended for new designs.

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	BD645		80	
Collector-base voltage $(I = 0)$	BD647	N/	100	v
Collector-base voltage ($I_E = 0$)	BD649	V _{CBO}	120	v
	BD651		140	
	BD645		60	
	BD647	Ň	80	V
Collector-emitter voltage ($I_B = 0$)	BD649	V _{CEO}	100	
	BD651		120	
Emitter-base voltage		V _{EBO}	5	V
Continuous collector current		Ι _C	8	A
Peak collector current (see Note 1)		I _{CM}	12	A
Continuous base current		Ι _Β	0.3	A
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)		P _{tot}	62.5	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)		P _{tot}	2	W
Unclamped inductive load energy (see Note 4)		½Ll _C ²	50	mJ
Operating junction temperature range		Тj	-65 to +150	°C
Storage temperature range		T _{stg}	-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds		TL	260	°C

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

2. Derate linearly to 150° C case temperature at the rate of 0.4 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 5 mA, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

How to Order

Device	Package	Carrier	Order As
BDxxx	TO-220	Tube	BDxxx-S

Insert xxx transistor type number 645, 647, 649, etc.

PRODUCT INFORMATION

MAY 1993 - REVISED JUNE 2013

*RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011. Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

BD645, BD647, BD649, BD651 NPN SILICON POWER DARLINGTONS

BOURNS®

electrical characteristics at 25°C case temperature (unless otherwise noted)

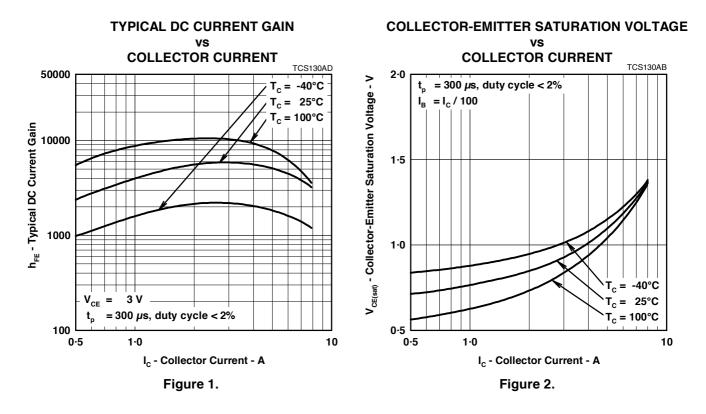
	PARAMETER		TEST	CONDITIONS		MIN	ТҮР	MAX	UNIT
VIDDIOFO	Collector-emitter breakdown voltage	I _C = 30 mA	I _B = 0	(see Note 5)	BD645 BD647	60 80			
					BD649	100			V
					BD651	120			
		V _{CE} = 30 V	I _B = 0		BD645			0.5	
	Collector-emitter	$V_{CE} = 40 V$	I _B = 0		BD647			0.5	mA
I _{CEO}	cut-off current	$V_{CE} = 50 V$	I _B = 0		BD649			0.5	
		$V_{CE} = 60 V$	$I_B = 0$		BD651			0.5	
		$V_{CB} = 60 V$	I _E = 0		BD645			0.2	
		V _{CB} = 80 V	$I_E = 0$		BD647			0.2	
		V _{CB} = 100 V	$I_E = 0$		BD649			0.2	
	Collector cut-off current	V _{CB} = 120 V	$I_E = 0$		BD651			0.2	mA
		$V_{CB} = 40 V$	$I_E = 0$	T _C = 150°C	BD645			2.0	ША
		$V_{CB} = 50 V$	$I_E = 0$	T _C = 150°C	BD647			2.0	
		$V_{CB} = 60 V$	$I_E = 0$	T _C = 150°C	BD649			2.0	
		$V_{CB} = 70 V$	$I_E = 0$	T _C = 150°C	BD651			2.0	
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	$I_{\rm C} = 0$	(see Notes 5 and	d 6)			5	mA
h _{FE}	Forward current transfer ratio	V _{CE} = 3 V	I _C = 3 A	(see Notes 5 and	16)	750			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_{B} = 12 \text{ mA}$ $I_{B} = 50 \text{ mA}$	$I_{\rm C} = 3 \text{ A}$ $I_{\rm C} = 5 \text{ A}$	(see Notes 5 and	16)			2 2.5	V
V _{BE(sat)}	Base-emitter saturation voltage	I _B = 50 mA	I _C = 5 A	(see Notes 5 and	16)			3	V
V _{BE(on)}	Base-emitter voltage	V _{CE} = 3 V	I _C = 3 A	(see Notes 5 and	16)			2.5	V

NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle < 2%.

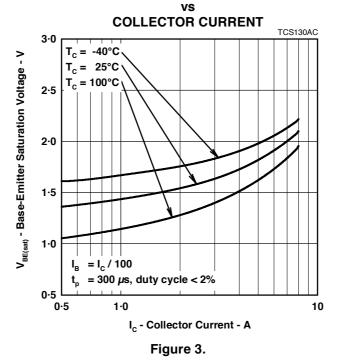
6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

PARAMETER		MIN	ТҮР	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2.0	°C/W
R _{0JA}	Junction to free air thermal resistance			62.5	°C/W



MAY 1993 - REVISED JUNE 2013


BOURNS®

BD645, BD647, BD649, BD651 NPN SILICON POWER DARLINGTONS

TYPICAL CHARACTERISTICS

BASE-EMITTER SATURATION VOLTAGE

PRODUCT INFORMATION

MAY 1993 - REVISED JUNE 2013

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

BOURNS®

MAXIMUM SAFE OPERATING REGIONS

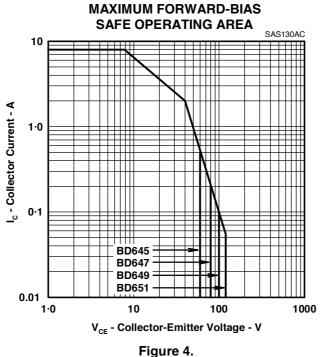
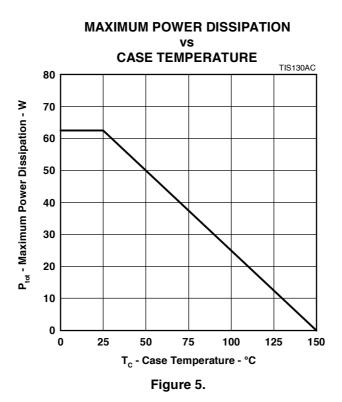



Figure 4.

PRODUCT INFORMATION

MAY 1993 - REVISED JUNE 2013

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.

Users should verify actual device performance in their specific applications.