

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

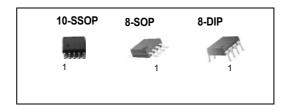
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

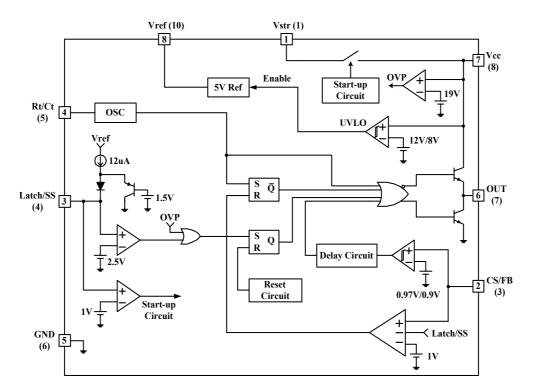
FAN7601

Green Current Mode PWM Controller

Features

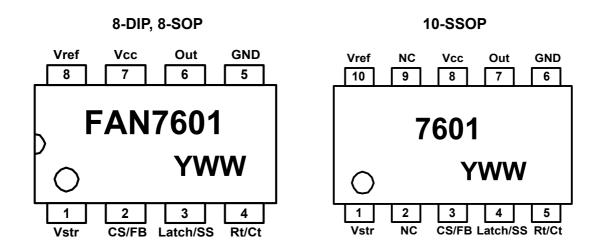

- · Green Current Mode PWM Control
- · Low Operating Current: Max 4mA
- Burst Mode Operation
- Internal High Voltage Start-up Switch
- Under Voltage Lockout (UVLO): 12V/8V
- Latch Protection & Soft Start Function
- Over Voltage Protection: 19V
- Operating Frequency up to 300kHz
- Max Duty Cycle: 95%

Typical Applications


- · Off-Line Adapter Applications
- · Auxiliary Power Supplies

Description

The FAN7601 is a green programmable frequency current mode PWM controller. It is specially designed for the off-line adapter application and the auxiliary power supplies which require high efficiency at a light load and no load. The internal high voltage start-up switch and the burst mode reduce the power loss. The FAN7601 includes some protections such as latch protection and over voltage protection. The latch protection can be used for over voltage protection and/or thermal protection and so on. And the soft start prevents the output voltage over shoot at start up.



Internal Block Diagram

^{*()} is 10-SSOP PIN Number

Pin Assignments

Pin Definitions

Pin Number	Pin Name	Pin Function Description		
1 (1)	Vstr	Start-up		
2 (3)	CS/FB	Current Sense and Feedback		
3 (4)	Latch/SS	Latch Protection and Soft Start		
4 (5)	Rt/Ct	Oscillator Timing		
5 (6)	GND	Ground		
6 (7)	Out	Gate Drive Output		
7 (8)	Vcc	IC Power Supply		
8 (10)	V _{ref}	Voltage Reference		

^{*()} is 10-SSOP PIN Number

Absolute Maximum Ratings

(Ta = 25°C, unless otherwise specified)

Characteristics	Symbol	Value	Unit	
Supply Voltage	Vcc	20	V	
Input Voltage CS/FB		Vcs/fb	-0.3 to 20	V
Operating Temperature		TOPR	-25 to +125	°C
Storage Temperature		TSTG	-55 to +150	°C
Junction Temperature	Tj	150	°C	
Output Current		lo	250	mA
Vstr Input Voltage		Vstr	500	V
ESD Capability, HBM Model (All pins except Vcc and Vstr)		-	2.0	kV
ESD Capability, Machine Model	-	300	V	
	8-DIP		100	°C/W
Thermal Resistance, Junction to Air	8-SOP	Rθja	180	
	10-SSOP		130	1

Electrical Characteristics

 $(T_a = -25^{\circ}C \sim 125^{\circ}C, Vcc = 14V, Rt = 9.5k\Omega, Ct = 2.2nF unless otherwise specified)$

Characteristics	Symbol	Conditions	Min.	Тур.	Max.	Unit
REFERENCE SECTION	•		.			
Reference Output Voltage	V _{ref}	I _O = 1mA	4.85	5.00	5.15	V
Line Regulation	ΔV _{ref1}	V _{CC} = 10V ~ 18V	-	10	20	mV
Load Regulation	ΔVref2	IO = 1mA ~ 10mA	-	20	30	mV
OSCILLATOR SECTION	•		•		•	
Initial Accuracy	Fosc	-	90	100	110	kHz
Voltage Stability	STV	V _C C = 10V ~ 18V	-	1.0	1.5	%
Amplitude	Vocs	Vpin4 peak-to-peak	-	1.25	-	V
PWM SECTION	•		.			
CS/FB Threshold Voltage1	VCS/FB1	-	0.9	1.0	1.1	V
Maximum Duty Cycle	DMAX	Ta = 25°C	92	95	98	%
Minimum Duty Cycle	DMIN	-	-	-	0	%
BURST MODE SECTION			l .	I		
CS/FB Threshold Voltage2 ⁽¹⁾	VCS/FB2	-	0.77	0.97	1.17	V
CS/FB Threshold Voltage3 ⁽¹⁾	VCS/FB3	-	0.7	0.9	1.1	V
SOFT START SECTION			l .	I		
Soft Start Current	Iss	Vpin3 = GND	9	12	15	μА
Soft Start Limit Voltage ⁽²⁾	VsL	ISS = 1μA	1.2	1.5	1.8	V
PROTECTION SECTION			l .	I		
Latch Voltage	VLATCH	-	2.25	2.5	2.75	V
Over Voltage Protection	Vove	-	18	19	20	V
UVLO SECTION	•		.			
Start Threshold Voltage	VtH	-	11	12	13	V
Minimum Operating Voltage	VtL	-	7	8	9	V
TOTAL CURRENT SECTION			l .	I		
Operating Supply Current	lop	-	-	3	4	mA
OUTPUT SECTION			l .	I		
Low Output Voltage	VoL	Ta =25°C, I _O = 100mA	-	2	2.5	V
High Output Voltage	Voн	Ta =25°C, I _O = -100mA	11.5	12	14	V
Rising Time ⁽¹⁾	Tr	Ta =25°C, CI = 1nF	-	45	150	ns
Falling Time ⁽¹⁾	T _f	Ta =25°C, CI = 1nF	-	35	150	ns
START UP SECTION	L	1				
VSTR Start-up Current	Istr	V _{str} = 30V, Ta =25°C	0.5	1	1.5	mA

Note:

^{1.} These parameters, although guaranteed, are not 100% tested in production.

^{2.} It is recommended to connect $1M\Omega$ resistor between the Latch/SS pin and GND to prevent abnormal operation of the latch protection by noise coupling.

Typical Performance Characteristics

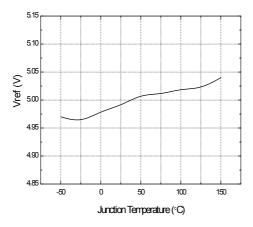


Figure 1. Trimmed Reference Voltage

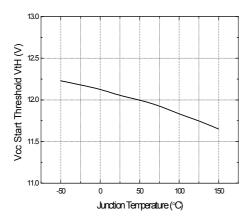


Figure 3. Vcc Start Threshold Voltage

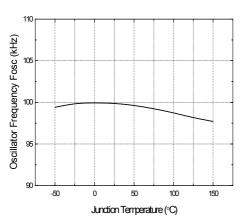


Figure 5. Oscillator Frequency

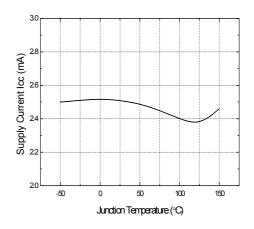


Figure 2. Supply Current

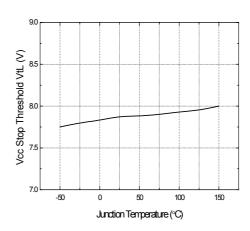


Figure 4. Vcc Stop Threshold Voltage

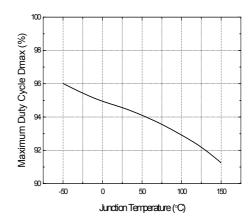


Figure 6. Maximum Duty Cycle

Typical Performance Characteristics (Continued)

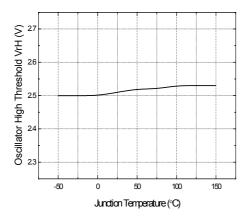


Figure 7. Oscillator High Threshold Voltage

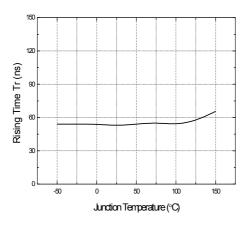


Figure 9. Output Rising Time

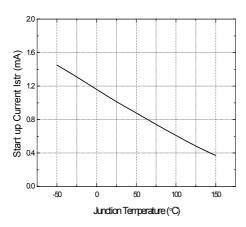


Figure 11. Start-up Current

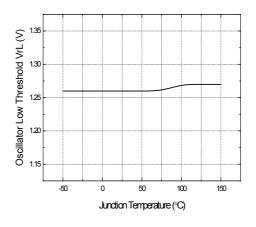


Figure 8. Oscillator Low Threshold Voltage

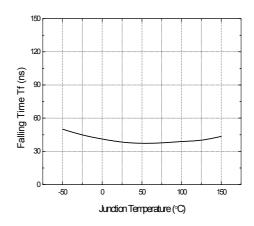


Figure 10. Output Falling Time

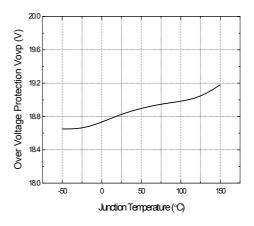



Figure 12. Over Voltage Protection Level

Typical Performance Characteristics (Continued)

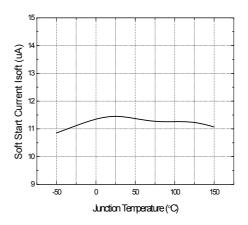
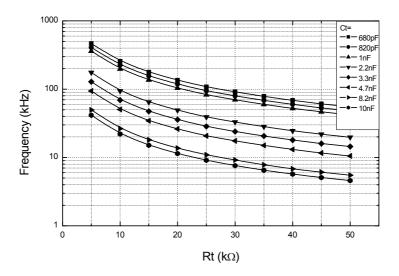
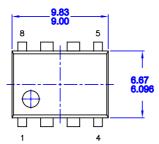
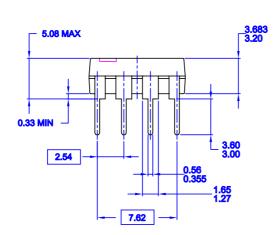
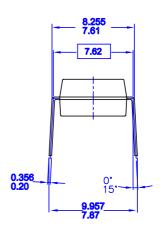


Figure 13. Latch Protection Voltage

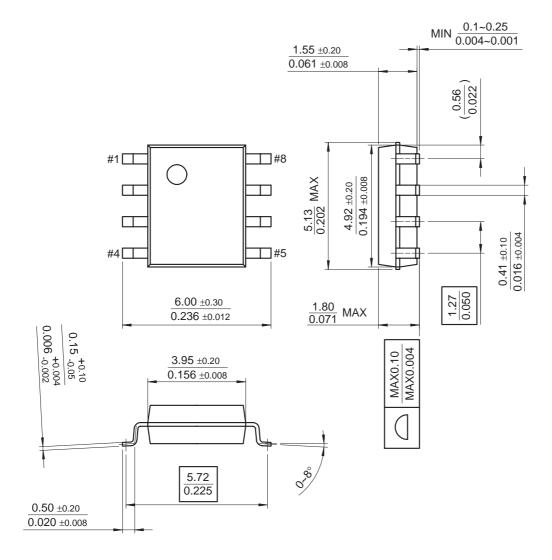
Figure 14. Soft Start Current


Figure 15. Oscillator Frequency Characteristic

Mechanical Dimensions

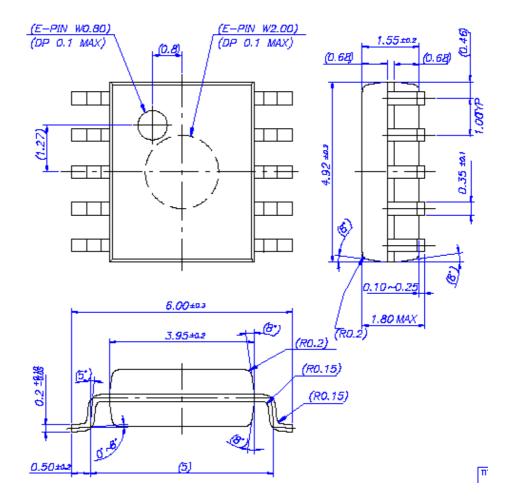
8DIP


NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO
JEDEC MS-001 VARIATION BA
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH, AND TIE BAR EXTRUSIONS.
D) DIMENSIONS AND TOLERANCES PER
ASME Y14.5M-1994

MKT-N08FrevB

Mechanical Dimensions (Unit: mm) (Continued)

Package


8-SOP

Mechanical Dimensions (Unit: mm) (Continued)

Package

10-SSOP-225

Ordering Information

Device Package		Operating Temp.
FAN7601N	8-DIP	
FAN7601M	8-SOP	-25°C ~ 125°C
FAN7601G	10-SSOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

DATASHEETS, SAMPLES, BUY

TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

(PCNs)

Support

Sales support

Design center

Quality and reliability

Related Links

Request samples

How to order products

Product Change Notices

Search:

Home >> Find products >>

FAN7601

GREEN MODE PWM CONTROL IC

Contents

- General description
- Features
- Applications
- Product status/pricing/packaging
- Order Samples
- Application notes
- Qualification Support

General description

The FAN7601 is a green programmable frequency current mode PWM controller. It is specially designed for the off-line adapter application and the auxiliary power supplies which require high efficiency at a light load and no load. The internal high voltage start-up switch and the burst mode reduce the power loss. The FAN7601 includes some protections such as latch protection and over voltage protection. The latch protection can be used for over voltage protection and/or thermal protection and so on. And the soft start prevents the output voltage over shoot at start up.

BUY

Datasheet Download this datasheet

e-mail this datasheet

Print version

This page

back to top

Features

- Green Current Mode PWM Control
- Low Operating Current: Max 4mA
- Burst Mode Operation
- Internal High Voltage Start-up Switch
- Under Voltage Lockout (UVLO): 12V/8V
- Latch Protection & Soft Start Function
- Over Voltage Protection: 19V
- Operating Frequency up to 300kHz
- Max Duty Cycle: 95%

back to top

Applications

- Off-Line Adapter Applications
- Auxiliary Power Supplies

back to top

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method
FAN7601G	Full Production	Full Production	\$0.72	<u>SSOP</u>	10	RAIL
FAN7601GX	Full Production	Full Production	\$0.72	SSOP	10	TAPE REEL
FAN7601M	Full Production	Full Production	\$0.67	SOIC	8	RAIL
FAN7601MX	Full Production	Full Production	\$0.67	SOIC	8	TAPE REEL
FAN7601N	Full Production	Full Production	\$0.67	DIP	8	RAIL

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

back to top

Application notes

AN-4129: Green Current Mode PWM Controller FAN7601 (357 K) Jul 27, AN-6014: AN-6014 Green Current Mode PWM Controller FAN7602 (390 K) Jul 27, 2007

Qualification Support

Click on a product for detailed qualification data

Product
FAN7601G
FAN7601GX
FAN7601M
FAN7601MX
FAN7601N

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |