

SANYO Semiconductors DATA SHEET

LA73024AV — Monolithic Linear IC Double Scart Interface IC

Overview

This LA73024AV is a double scart interface IC.

Functions

- AV switches,
- Changeable Gain AMP

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} V max	24, 29 pin	6.0	V
	V _{CC} A max	14 pin	13.0	V
Allowable power dissipation	Pd max	Ta ≤ 80°C*	760	mW
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-55 to +150	°C

• 6dB AMP+driver

• FSS output

 \ast When mounted on a 114.3×76.1×1.6mm³ glass epoxy board.

Operating Conditions at $Ta = 25^{\circ}C$

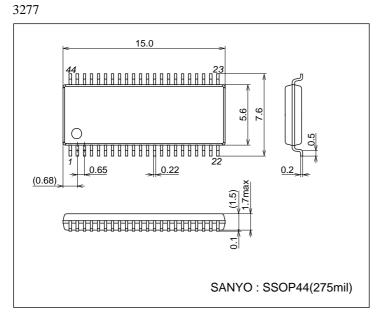
Parameter	Symbol	Conditions	Ratings	Unit
Recommending operation voltage	V _{CC} V	pins 24 and 29 5.0		V
	V _{CC} A	pin 14	12.0	V
Operating voltage range	V _{CC} V op	pins 24 and 29	4.5 to 5.5	V
	V _{CC} A op	pin 14	11.5 to 12.5	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before usingany SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

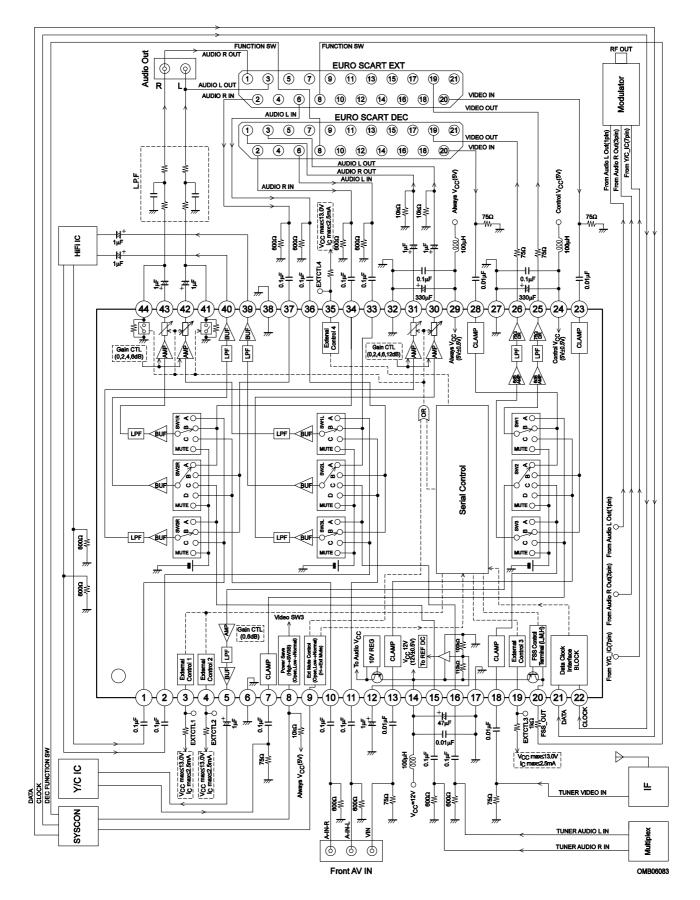
SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LA73024AV

Electrical Characteristics at Ta = 25°C, $V_{CC} = \pm 5.0V$, $V_{CC}A = 12.0V$


Parameter	Symbol	Conditions			Ratings		Unit
i arameter	Gymbol			min	typ	max	Onic
Current dissipation 1	I _{CC} V1	Pin 24 Flow in current when non-signa	ıl	16.0	24.0	32.0	mA
Current dissipation 2	I _{CC} V2	Pin 29 Flow in current when non-signa	d	12.0	18.0	24.0	mA
Current dissipation 3	ICCA	Pin 14 Flow in current when non-signa	ıl	17.0	25.0	33.0	mA
FSS output H voltage	V _H FSS	Serial control select FSS OUT H		V _{CC} A-1.0	V _{CC} A-0.5	V _{CC} A	V
FSS output M voltage	V _M FSS	Serial control select FSS OUT M		5.0	6.0	7.0	V
FSS output L voltage	V _L FSS	Serial control select FSS OUT L		0	0.1	0.5	V
FSS output cut off current	ICUTOFF	Flow out current when Pin 20	М	2.0	3.61	10.0	mA
		connecting to GND.	н	2.0	3.78	10.0	mA
External control terminal H voltage	V _{EXTH}	$R_L = 1.8 k\Omega, V_{CC} 3 < 13 V$		V _{CC} 3-0.2	V _{CC} 3		V
External control terminal L voltage	VEXTL	$R_L = 1.8k\Omega$, $V_{CC}3 = 5V$		0	0.7	1.0	V
		$R_L = 10k\Omega$, $V_{CC}3 = 5V$		0	0.15	1.0	V
External control terminal drive	I _{DR}	$R_L = 1.8k\Omega$, $V_{CC}3 = 5V$		2.2	2.4	2.78	mA
current		$R_L = 10k\Omega$, $V_{CC}3 = 5V$		400	485	500	μΑ
External mute control H	VMUTECTLH	External mute H, control voltage of Pir	n 9.	4.0		VCCV	V
External mute control L	VMUTECTLL	External mute L, control voltage of Pir	9.	0		1.0	V
Video switches part							
Voltage gain V1	VG _{1V}	Pins 25 and 26 output, 100% white		5.6	6.1	6.6	dB
Voltage gain V2	VG _{2V}	Pin 5 output G2 D6-L, 100% white		-0.4	0.1	0.6	dB
Voltage gain V3	VG _{3V}	Pin 5 output G2 D6-H,100% white		5.6	6.1	6.6	dB
Frequency characteristics	VF	f = 100kHz/7MHz		-0.5	-0.0	0.5	dB
DG differential gain	DG	V _{IN} = 1Vp-p		-1.0	0.0	1.0	%
DP differential phase	DP	V _{IN} = 1Vp-p		-1.5	0.0	1.5	deg
Output voltage	Vout	Pins 25 and 26 DC voltage when non-signal.			1.15	2.0	V
Audio switches part							
Voltage gain 1A	V _{G1A}	Serial control select 0dB.		-0.3	0.2	0.7	dB
Voltage gain 2A	V _{G2A}	Serial control select 2dB.		1.7	2.2	2.7	dB
Voltage gain 3A	V _{G3A}	Serial control select 4dB.		2.7	4.2	4.7	dB
Voltage gain 4A	V _{G4A}	Serial control select 6dB.		5.7	6.2	6.7	dB
Voltage gain 5A	V _{G5A}	Serial control select 6dB.		11.7	12.2	12.7	dB
Maximum output level	VOMAX	Output level at the time of $f = 1 \text{ kHz}$, THD = 2%			3.0		Vrms
Total harmonic distortion	THD	V _{IN} = 1Vrms, f = 1kHz, AMP 0dB			0.06	0.20	%
Output noise voltage	VONOISE	Rg = $1k\Omega$, JIS-A FILTER			-100	-90	dBm
Cross talk between channel	VCTKA	V _{IN} = 1Vrms, f = 1kHz			-90	-75	dB
Mute attenuation	VMUTEA	V _{IN} = 1Vrms, f = 1kHz			-90	-75	dB
Input impedance	Z _{IN}			40	50	60	kΩ
Output off set voltage	VOFSET	Off set voltage at the time of changeor SW.	/er	-20	0	20	mV

Design guarantee Items


	Quertal		Ratings			Linit
Parameter	Symbol	Conditions	min	typ	max	Unit
Mute attenuation	VMUTEV	V _{IN} = 1Vp-p, f = 4.43MHz		-60	-50	dB
Cross-talk between channel	V _{СТКV}	$V_{IN} = 1Vp-p, f = 4.43MHz$ Driver output terminated with 75 Ω .		-60	-50	dB

Package Dimensions

unit : mm

Block Diagram and Sample Application Circuit

Pin Functions

Pin No.	Pin name	Function	DC voltage	Equivalent circuit
1		Audio input terminal.	5.58V	
2 10 11 15 16 33 34 36 37	A _{IN} 1R A _{IN} 1L A _{IN} 2R A _{IN} 3R A _{IN} 3R A _{IN} 3L A _{IN} 4R A _{IN} 5L A _{IN} 5R		0.00V	AIN O 2000 S S S S S S S S S S S S S
3 4 19 35 5	EXTCTL1 EXTCTL2 EXTCTL3 EXTCTL4	General purpose output. Open collector. Video output terminal.	2.5mA, ON → 0.75V OFF → OPEN 1.10V	V _{CC} (5V)
5	Vout	Push-pull output Low-impedance.	1.100	V _{CC} (5V) V _{CC} (5V) V _{OUT} V _{OUT} SGND
		Output Pin DC Signal wave form (AmpGain 0dB)	2.1 [°] 1.0Vp-p	(ĂmpGain 6dB)
6 17 27 32 38	GND GND GND GND GND	(EXT-75Ω Driver) (DEC-75Ω Deiver)	ov	

Continued on next page.

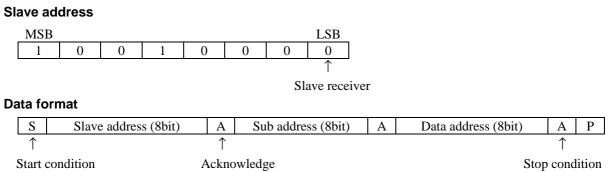
	from preceding page.	1		
Pin No.	Pin name	Function	DC voltage	Equivalent circuit
7 13 18 23 28	V _{IN} 1 V _{IN} 2 V _{IN} 3 V _{IN} 4 V _{IN} 5	Video input terminal. Sync-tip clamp input Hi-impedance.	1.8V	V _{CC} (5V) V _{IN} SGND V _{IN} SGND V _{IN} V _{IN}
		Input Signal wave form	1.0Vp-p	Input Pin DC Signal wave form 2.0Vp-p 1.8V
8	PWRSAV	Power save mode select pin. OPEN: L	0.2V	VCC(5V) PWRSAV SGND
9	AUMUTE	Control terminal for audio mute. OPEN: LOW	0.05V	AWUTE Cicloso
12	REFFIL	Terminal for Ref_DC ripple removing.	4.94V	12.0V V _{CC} 12 V _{CC} (10.5V) V _{CC} (10.5V)

Continued on next page.

	rom preceding page.			
Pin No.	Pin name	Function	DC voltage	Equivalent circuit
20	FSSOUT	FSS control terminal. Output H, M, L 3 values with serial control.	H: V _{CC} -0.5V M: 6V L: 0V	6V ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
21	DATA	Serial data input terminal. Conformed to I ² C BUS.		Control V _{CC} (5V)
22	CLOCK	Serial clock input terminal. Conformed to I ² C BUS.		CLOCK
24	V _{CC} 5A	Control V _{CC} for Video. Power save \rightarrow open		
25 26	V _{OUT} 75A V _{OUT} 75B	Video driver output terminal. Push-pull output Low-impedance.	1.10V	V _{CC} (5V)
			Dutput Pin DC Signal wave form	3.1V 2.0Vp-p 1.1V
29	V _{CC} 5B	Always V _{CC} for Video.		

Continued on next page.

Continued	ontinued from preceding page.								
Pin No.	Pin name	Function	DC voltage	Equivalent circuit					
30 31 42 43	A _{OUT} 2L A _{OUT} 2R A _{OUT} 3L A _{OUT} 3R	Audio output terminal Push-pull output Low-Impedance	4.91V	REG10.5V					
39 40	A _{OUT} 1L A _{OUT} 1R	Audio output terminal Push-pull output Low-Impedance	4.91V	V _{CC} (5V)					
41 44	PWRMUTE1 PWRMUTE2	Output terminal of audio muting	OV	Always V _{CC} (5V) V _{CC} 12 REG10.5V PWRMUTE PORD					


Power Save

LA73024AV has two supplies 5V for Video part and 12V for audio part and FSS output. LA73024AV separates perfectly 5V system from 12V system, so it can be individually movement. For example when in the stand-by mode, if you open 14 pins but 5V supplies 24 and 29 pins, Video part and serial control part work normally. In this case audio part and FSS output don't work normally. And when you pull up 8pin and open 24 pin , IC chooses automatically video sw3-B.Consequently Ext input and Decoder output only move , you can save more power dissipation .

Audio Mute

LA73024AV builds in two mute transistors for reduce audio pop-noise when occur at power on and off. You can control both on serial control and on external parallel control for audio mute.

Serial Control Specification

Sub address and data byte table

Sub address		Data byte (Underline is initial setting.)								
Hexadecimal	D8	D7	D6	D5	D4	D3	D2	D1		
	SV	V1	SV	V2	SI	V3	FSS	OUT		
	00	: C	00	: D	00	: C	00: H	HIGH		
01	<u>01</u>	<u>: B</u>	01	: C	<u>01</u>	<u>: B</u>	01: H	HIGH		
(0000 0001)	10	: A	10	: В	10	: A	10:	MID		
	11	: A	<u>11</u>	<u>: A</u>	11	:*	11: I	LOW		
	EXT	EXT	AMP GAIN	AUDIO AMP GAIN1		AUDIO AMP GAIN2				
	CTL1	CTL2	VPS OUT	(DEC OUT)			(EXT OUT)			
02				000: 0dB			00: 0dB			
(0000 0010)	<u>0: L</u>	<u>0: L</u>	<u>0: 0dB</u>	<u>001: 2dB</u>			<u>01: 2dB</u>			
(0000 0010)	1: H	1: H	1: 6dB	010: 4dB			10: 4dB			
				011: 6dB			11: 6dB			
					100:12dB	r				
	MUTE1	MUTE2	MUTE3	MUTE4	MUTE5	MUTE6	EXT	EXT		
03	VSW1 OUT	VSW2 OUT	VSW3 OUT	ASW1 OUT	ASW2 OUT	ASW3 OUT	CTL3	CTL4		
(0000 0011)	0: through	0: through	0: through	0: through	0: through	0: through	<u>0: L</u>	<u>0: L</u>		
	<u>1: MUTE</u>	<u>1: MUTE</u>	<u>1: MUTE</u>	<u>1: MUTE</u>	<u>1: MUTE</u>	<u>1: MUTE</u>	1: H	1: H		

Data transfer

I²C-BUS control system is adopted in SW IC and SW IC is controlled by SCL (Serial Clock) and SDA (Serial Data) At first, please set up the START condition^{*1} by these two terminals (SCL and SDA). And next, please input the 8bits data which should be synchronized with SCL into SDA terminal. Still more, please give priority to high rank bit at data transfer order (MSB \rightarrow LSB). The 9th bit is called as ACK (Acknowledge), SW IC sends [0] to the SDA terminal during SCL [1] period. So, please open the port of micro-processor during this period. LA73024AV adopt auto-increment, so you input only first sub-address data (called as Group) and you can transfer data in order. As thus the Data transfer Stop condition^{*2} is finished.

^{*1} SDA rise up during SCI is [1]

^{*2} SDA fall down during SCL is [1]

Transfer data format

The transfer data is composed by START condition, Slave address data^{*3}, and STOP condition.

After setting up the START condition, please transfer the Slave Address (regulated as "1001000" in SW IC). Group and next control data (Please see the Fig. 1)

Slave Address is composed by 7bits, and this bit 8th bit^{*4} should be set as [0].

But SW IC is not equipped with such a data out function, please keep this bit as [0].

The both of Group data and control data are composed by 8bits, and the one control action is defined with combination of these two data. And if you want to control 2 or more groups at the same mode, you can realize it by sending some control data together.

The data makes meaning with all bits, so you cannot stop the sending until all data transfer is over. But LA73024AV adopt auto-increment, for example you can stop to transfer STOP condition after group 2 data. If you want to stop transfer action, please transfer the STOP condition without fail.

^{*3} There are 3 control groups.

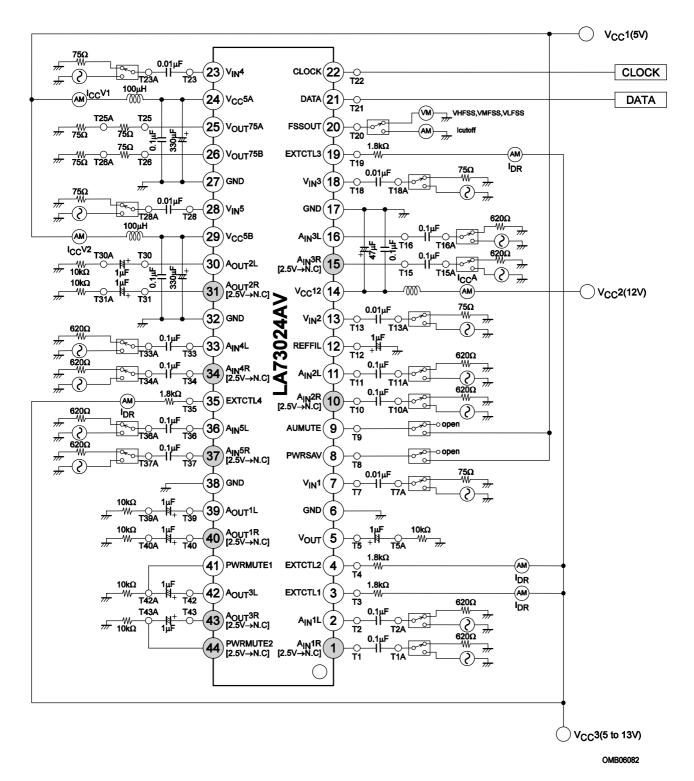
^{*4} This 8th bit called as R/W bit, and this bit shows the data transmission direction. [0] means send mode (accept mode with SW IC) and [1] means accept mode (send mode with SW IC) fundamentally.

Data structure

START condition Slave Address R/W ACK G	oup ACK Control data	ACK ···	STOP condition
---	----------------------	---------	----------------


Initialize

SW IC is initialized as the following mode for circuit protection. Please see "Sub address and data byte table" on page 9.


Characteristics of the SDA and SCL 1/0 stages for SW IC

Parameter	Symbol	min	max	unit
LOW level input voltage	VIL	0	1.5	V
HIGH level input voltage	VIH	3.5	5.0	V
LOW level output current	IOL		3.0	mA
SCL clock frequency	^f SCL		100	kHz
Set-up time for a repeated START condition	^t SU: STA	4.7		μs
Hold time START condition. After this period, the first clock pulse is generated.	^t HD: STA	4.0		μs
LOW period of the SCL clock	^t LOW	4.7		μs
Rise time of both SDA and SDL signals	^t R	0	1.0	μs
HIGH period of the SCL clock	^t HIGH	4.0		μs
Fall time of both SDA and SDL signals	^t F	0	1.0	μs
Data hold time	^t HD: DAT	0		μs
Data set-up time	^t SU: DAT	250		ns
Set-up time for STOP condition	^t SU: STO	4.0		μs
BUS free time between a STOP and START condition	^t BUF	4.7		μs

Definition of timing

Test Circuit

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 2006. Specifications and information herein are subject to change without notice.