Wide Aspect VISS Recording NTSC/PAL 1-Chip VHS Servo

VTR SERVO LSI HD49781 has digital servo functions for drum and capstan motor, as well as analog amplifier. It is a 1-chip device, and therefore can be applied on various types of VTR sets. This IC comes in 56-pin plastic shrink DIP and 56-pin QFP packages. This IC uses serial control method to connect to system controller (microcomputer). By this method, many functions can be entered internally, and the number of external components and wirings can be reduced.

Features

- PAL/NTSC 1-chip.
- By changing the corresponding mask ROM, CFG (capstan frequency generator), DFG (drum frequency generator) and HEAD SW timing can be set to satisfy the particular set's specifications.
- In previous versions, there are only VISS recording and rewriting function, and VISS detection function. For this IC, wide aspect VISS recording and rewriting function are added.
- In VASS function mode, recording and rewriting can be performed.
- With CMOS analog technology, CFG, DFG and DPG Schmitt amplifier, and analog switch are included.
- Uses synchronized serial bus with microcomputer interface. As the result, it is bussing-common with other Hitachi's ICs, and a less-wiring system can be constructed.

Main Functions

- 2-line serial bus.
- · EP-designated Head function.
- VISS/VASS (Wide Aspect VISS Recording)
- Tracking data is controlled by serial bus.
- · Digital adjustment of HEAD SW point.
- CTLP AMP Schmitt level is self-switchable.
- Search speed is selectable from 1-time to 63-times in each mode.
- Assemble Mark recording and detecting.
- · Search function in Assemble mode.
- YNR PULSE output.
- CTLP AMP gain and frequency characteristics are controlled serial bus.
- Drum and capstan PD-FIX are controlled by serial bus.
- Drum and capstan outputs are controlled by serial bus.
- · Field detection.
- · Noise detection.
- Feedback fu-correction.
- V-PULSE output
- V-PULSE polarity is controlled by serial bus.

Block Diagram

Pin Function Pin Pin I/O Format No. Name **Function** MODE 1 DATA **ADDRESS** OUT MSB LSB 01000011 Bit | FED C | BA98 | 7654 | 3210 MODE OUT 2 В PIN 1 PIN 2 PIN 3 0 0 1 3 0 0 1 ō 0 1 CTL Time constant: 1 to 40 ms 4 **↑ Vcc** Comparator Note: See time chart **DELAY** Retriggerable (discharge pulse: approx. 1 ms) MM 5 PG MM Non-retriggerable Note: See head SW timing 6 **DRUM** Schmitt input. Internal bias: +VTH --Vтн PG IN approx. 2V Note: See head SW timing Bias Schmitt input. Internal bias: DRUM 8 +Vтн approx. 2.5 V FG IN Bias Note: See head SW timing **DRUM** Ternary input 9 Pin 9 Н М Open = "M" Select Pin 10 approx. 30 kΩ В 10 Н 2 Head (1) 2 Head (2) DA4-(4) DA-4(1) DA4-(2) DA4- (3) М DA-4 ① DA-4(2) DA-4(3) L TEST **TEST** TEST Note: See head SW timing **CAPSTAN** - Open Gain → min -1 kHz MIX Amp 75 dB min - No Oscillation 60 dB DRUM at full feedback MIX Amp - Output D range: 0 to 5 V (No load) Output impedance: 2 kΩ max.

Pin Function (cont)

Pin No.	Pin Name	Function					I/O Format
13	DRUM FV out	Switched cap					
21	CAP FV out	Output D ran (Hi) Output imped				V or more	
16	DRUM PDout	Switched cap Output D ran				V or more	
19	CAP PD out	(Hi) Output imped				4	
18	NARROW	Binary input Open = "H"		arrow on-Narro	Vcc t approx. 30 kΩ		
29 30	CTL Head (-)				v -	-	
	CTLP Amp	 Open Gain No oscillation feedback Output D range (No Load) Output important 	on at full inge 0 to	80c 5 V	B min 60d		
36	CTLP IN	3-level Schmitt input selection No internal bias (DC coupling CTLP AMP and schmitt input) Note: See CTL schmitt VTH					
37	SW13	Controlled by Note: See se					
38 ·	CFG IN	Schmitt input Internal bias: 2.5 V				+Vтн Bias -Vтн	
40	CTL CLK	Binary output	. Pull up				approx. 10 kΩ ≥
41	Duty I/O	Binary input and output. Pull up	Mode Pin 41	Mark detection	Duty Mode		↑ Vcc
		Note: See Duty I/O	H	No mark	Duty = "0"	VISS not detect	
			L'L	Mark	Duty = "1"	VISS detect (Latch)	
42	fsc in	Input sensitiv Note: See fso			n (during f	sc)	4
							approx. 100 kΩ

Pin 1	Pin Function (cont)									
Pin No.	Pin Name	Function		//O Format						
43	REF 30	Note: See time chart								
44	AFF	Note: See FF time chart		- — > — (
45	VFF	Note: See FF time chart								
46	YNR Pulse			_						
47	V Pulse	Note: See V-Pulse	Note: See V-Puise							
48	EXT. Reset	Ternary input Open = "M" Note: See external sync	αρριοχ. 30 kΩ							
49	CMP SYNC	Binary input. Digital level input or ana input.	Digital level input or analog capacitance coupling							
50	Power on Reset	During power on, reset a flowing through CTL He between this pin and gro	ad pin. Insert a capacitor	Vcc/2 approx. 40 kΩ						
51	Serial Data	Binary schmitt input. P Note: See explanation of		↑ Vcc ≨approx.						
52	Serial CLK			10 kΩ						
53 .	TRK TRG									
54	CFG C/D	DATA	ADDRESS							
55	CTL C/D	MSB I	SB 01000011							
		FEDC BA98 7654 32								
56	MODE OUT		D E F PIN56 PIN55 PIN54							
	NOISE DET	0 0	0 CTL C/D CFG C/D 1 0 CFG 1 1 CFG NOISE DET							
		1 0 0 1 1 1 1	M-FF 0 1							

Functional Description

1. Synchronized Serial Bus (SSB)

1.1 Outline

1.1.1 Configuration

This communication technique consists of one serial clock (SCL) and one serial data (SDA) lines. This SSB technique enables multiple ICs to be controlled using a common bus.

1.1.2 Data Length

In this servo IC, the data consists of 8 bits in the address field and 16 bits in the data field.

1.1.3 Operation Description

Data is fetched and stored into the shift registers of the ICs connected to a synchronized serial bus and defined, as described below, by the state of the SDA counter that increments on the falling edge of SDA signal. The SDA counter operates

while the SCL clock is high, and is reset while it is low.

· HOLD mode

The system enters the HOLD mode at the second falling edge of SDA data. Data is held in the shift register of an IC until the HOLD mode changes to LATCH mode. This servo IC has four addresses. After one address is being "HOLD"ed, all incoming data from this point of time until the triggering of LATCH pulse is nullified (ignored).

LATCH mode

The system enters the LATCH mode at the third falling edge of SDA data. Data is then output from the shift register of an IC to the IC control register.

Through the combination of the HOLD and LATCH modes, this servo IC can be synchronized with multiple other ICs by only one-word instruction.

1.2 Format

1.2.1 Timing Chart: In this servo IC, the synchronized serial bus consists of 8 bits in an

address block and 16 bits in a data block as shown below. Only the data length (or plus Don't Care) is sent on the transmission side.

Figure 1 Timing Chart

1.2.2 Tail Mark

HOLD mode

The system enters the HOLD mode at the second falling edge of SDA data while the SCL clock is high. Data is held in the shift register of an IC until the HOLD mode changes to LATCH mode.

Figure 2 HOLD Mode

1.2.3 Timing (Servo IC only)

 $t1 \geq 0.5~\mu s,\, t2 \geq 0.5~\mu s,\, t3 \geq 0.5~\mu s,\, t4 \geq 0.5~\mu s$ $t5 \geq 0.5~\mu s,\, t6 \geq 0.5~\mu s,\, t7 \geq 0.5~\mu s$

· LATCH mode

The system enters the LATCH mode at the third falling edge of SDA data while the SCL clock is high. Data is output from the shift register of an IC to the IC control register.

Figure 3 LATCH Mode

1.3 Examples of Realization Methods of Tail Mark Circuitry

Figure 4 Method 1

Figure 5 Method 2

1.4 Servo IC Internal Registers' Address Assignment

		D.T.		LCD	ADDRESS	
l	MSB	DATA		LSB	ADDRESS	, []
Bit	23 22 21	20 19 18 17 16	<u>15 14 13 12 11 10</u>	9 8 7	6 5 4 3 2 1	لفـــــ
	DRUM CAP ON ON		SW SW F/R TH PB/REC/ Corr. ASBL/ INS	SP/LP/ TEP 0	0 0 0 0 0 1	1
						$\overline{}$
	VISS/VASS	VPM VP VP VP SHIFT ON DIR SEL.	VP SHIFT VP POSI LENGTH MSB	TION 1	0 0 0 0 0 1	1
	CTI MSB	L DLY DATA	MODE OUT SEL	WA/ WA 0	1 0 0 0 0 1	1
	VP VP DPE	D CPD SW NTSC SLOWFIELD FIX 13 PAL A/B DET I	REC SW POINT D	ATA LSB 1	1 0 0 0 0 1	1

Figure 6

HD49781/NT **SSB Serial Table DATA** * MSB FIRST MSB LSB F E D C B A 9 8 7 6 5 4 3 2 1 0 (ADDRESS = 00000011) 0 0 SP 0 1 LP 10 EP 0 0 REC 0 1 **ASB** 1 0 INST 1 1 PB 0 1 1 **fH CORRECTION** OFF (DPD ON) 1 1 1 **fh CORRECTION** ON (DPD OFF) 0 0 0 A. FF OFF A. FF OFF 0 0 1 A. FF OFF 0 1 0 A. FF 1 0 0 ON 1 0 1 A. FF ON A. FF ON 1 1 0 0 **FWD** 1 REV 0 SW(8) OFF (FB SW of Pin 25 and 26) 1 SW(8) ON 0 SW(12) OFF (FB SW of Pin 34 and 35) 1 SW(12) ON SEARCH SPEED (NTSC/PAL.SP/LP/EP common) 000000 **SLOW** 000001 X1 000010 X2 1 1 1 1 1 0 X62 111111 X63 0 **MOTOR** STOP (CAP) 1 START (CAP) 0 **MOTOR** STOP (DRUM)

START

(DRUM)

1

SSB Serial Table (cont)

DATA

* MSB FIRST

MSB	LSB	-	
F E D C B A 9 8 7 6 5 4		- (ADDRESS =100000)11)
1		VISS REC FF RESET	
0		VISS REC FF RESET	
0 0		VASS Mode	Duty DET Mode
1 1 1		VASS Mode	WRITE Mode
1 1 0		VISS Mode	VISS REC Mode
0 1		VISS Mode	VISS DET Mode
1 0		VISS Mode	VISS DET FF RESET
*	* * * *	V.P. POSITION DATA	
0 0 0		V.P. SHIFT	Length 0.0H
0 0 1		V.P. SHIFT	Length 0.5H
0 1 0		V.P. SHIFT	Length 1.0H
0 1 1		V.P. SHIFT	Length 1.5H
1 0 0		V.P. SHIFT	Length 2.0H
1 0 1	- -	V.P. SHIFT	Length 2.5H
0 0		V.P. SHIFT SEL	<u>CH1 CH2</u> FIXED FIXED
0 1		,,, , , , , , , , , , , , , , , , , ,	FIXED SHIFT
1 0			SHIFT FIXED
1 1			SHIFT SHIFT
0		V.P. SHIFT	Direction (+)
1		V.P. SHIFT	Direction (-)
0		V.P.	OFF
1		V.P.	ON
0	•	V.P.	MONITOR CUT OFF
1		V.P	MONITOR CUT ON

SS	B Se	rial	Tabl	e (co	ont)														
	ATA			(- (- (•		.v. 8. a.	00 EID0
	MSB LSB					_				* (V)	SB FIRS								
F	E D	С	ВА	9	В	7	6	5	4	3	2	1	0	- (ADD	RESS = 0	1000011)		
									_				1	WIDI	E ASPECT	(WA)	MODE		
													0	WA	MODE				
																ODE O	UT		
														Α	В	С		E	F
														Pin 1	Pin 2	Pin 3	Pin 56	Pin 55	Pin 54
												0						CTL C/D	CFG C/D
										0		1						0	CFG
										1_		1						1	CFG
									0		0						NOISE DE1	Г	
									0		0						M-FF		
									1		1						0 1		
					-			0	_							0		<u> </u>	
								1								1			
					-		0						_		0				
					_		1								1				
					()								0					
						1								1					

		HD49781/NT
SSB Serial Table (cont)		
DATA		* MSB FIRST
MSB LSB		
F E D C B A 9 8 7 6 5 4 3 2 1 0	(ADDRESS =1100	00011)
* * * * * * *	REC SW POINT I	
0 0 0 0 0 0 0	ANALOG MM ON	
0 0 0 0 0 0 1	SW.P DATA/ANA	LOG MM OFF
l		
1 1 1 1 1 1 1		
0	FIELD DET	OFF
1		ON
0	SLOW A	
1	SLOW B	
0 1	SYSTEM SEL	PAL NTSC
0	SW(13) OFF ON	(SW of Pin 37)
0	P/D FIX OFF	(CAP)
1	ON	(CAP)
0	P/D FIX OFF	(DRUM)
1	ON	(DRUM)
0	V.P. SEL	NOR
1	-	+6H
0	V.P. POLARITY	H: PEDESTAL M: SYNC H: SYNC M: PEDESTAL

2. DRUM System Specification

2.1 DRUM Speed System's Constants

	DFG Frequency	S/H Frequency	Counter Clock	Counter Bit	FV-Gain	DRUM PD ADJ
NTSC	359.61 Hz	359.61 Hz	fsc/3	12 bit	40.5 mV/%	312 Hz to 425 Hz
PAL	300.00 Hz	300.00 Hz	fsc/4	12 bit	45.1 mV/%	264 Hz to 348 Hz

2.2 DRUM Phase System's Constants

		S/H Frequency	Counter Clock	Counter Bit	PD Gain
NTSC	Phase detection	29.97 Hz	fsc/4	12 bit	1.092 V/ms
	fH correction	3.93 kHz	fsc/4	11 bit	2.184 V/ms
PAL	Phase detection	25.00 Hz	fsc/4	12 bit	1.353 V/ms
	fH correction	3.91 kHz	fsc/4	11 bit	2.706 V/ms

2.3 Drum P/D FIX System

1) P/D OUT FIX

P/D OUT signal is fixed at 1/2 VCC when the DP/D FIX system is turned on by serial data.

2) SW1 On condition

Switch SW1 is on for the following conditions:

- In states other than fH correction and when the drum speed exceeds the range of Drum Speed System Constant DRUM PD ADJ in table 2-1.
- When COMP SYNC no-signal is detected or when noise is detected during fu correction.

Figure 7 DRUM P/D FIX System

2.4 ft Correction System

1) fh correction accuracy

NTSC 63.5556 µs (discrepancy: 0)

PAL 63.9996 μs (discrepancy: -1/625 fsc

2) fh correction

- The drum reference counter is forcibly synchronized with DRUM Head SW.
- Switch SW2 is off and switch SW3 is on.
- An H DISCRI error is output to the PD OUT pin.

3) fh correction cancellation

- · Switch SW3 is off.
- Switch SW2 remains on until the time shown below after the ft correction is cancelled.

NTSC 67 to 100 ms PAL 80 to 120 ms

3. CAPSTAN System Specification

3.1 CAPSTAN Speed System's Constants

			CFG Frequency	S / H Frequency	Counter Clock	Counter Bit	FV Gain
NTSC	NORMAL		SP	2157.8 Hz	fsc	11 bit	40.5 mV/%
			LP	1078.9 Hz	fsc/2	-	
			EP	719.3 Hz	fsc/3		
	SLOW	SLOW A	SP	1618.4 Hz	fsc	11 bit	54.0 mV/%
			LP	809.2 Hz	fsc/2	_	54.0 mV/%
			EP	539.5 Hz	fsc/3		54.0 mV/%
		SLOW B	SP	1163.3 Hz	fsc	11 bit	75.1 mV/%
			LP	809.2 Hz	fsc/2	_	54.0 mV/%
			EP .	539.5 Hz	fsc/3		54.0 mV/%
PAL	NORMAL		SP	1513.4 Hz	fsc/2	11 bit	35.8 mV/%
			LP	756.7 Hz	fsc/4		
	SLOW	SLOWA	SP	1135.1 Hz	fsc/2	11 bit	47.7 mV/%
			LP.	567.5 Hz	fsc/4		47.7 mV/%
		SLOW B	SP	756.7 Hz	fsc/2	_ 11 bit	71.5 mV/%
			LP	567.5 Hz	fsc/4		47.7 mV/%

Note: F/V Center Correction (during search): The F/V center correction below is performed in fh correction mode. In search mode, FG is converted after FG pulse is decremented in the same ratio as for CTL pulse. The F/V-converted center frequency is corrected according to the speed as shown below.

fn Correction	NTSC							
(Number of rotations)	SP	ŁР	EP					
7.5%	From x9	From x18	From x28					
3.3%	x3 to x8	x6 to x17	x10 to x27					
0%	x2 to SLOW to x-2	x5 to SLOW to x-5	x9 to SLOW to x-9					
-3.5%	x-3 to x-8	x-6 to x-17	x-10 to x-27					
-7.1%	From x-9	From x-18	From x-28					

fh Correction	<u>PAL</u>		
(Number of rotations)	SP	<u>L</u> P	
8.7%	From x14	From x28	
4.2%	x5 to x13	x10 to x27	
0%	x4 to SLOW to x-4	x9 to SLOW to x-9	
-4.5%	x-5 to x-13	x-10 to x-27	
-8.1%	From x-14	From x-28	

3.2 CAPSTAN Phase System's Constant

		S/H			PD GAIN	
		Frequency	Counter Clock	Counter Bit	kP 1	kP 2
NTSC		29.97 Hz	fsc/8	11 bit	0.546 V/ms	1.639 V/ms
PAL	PB	25.00 Hz	fsc/8	11 bit	0.677 V/ms	2.030 V/ms
	REC	25.22 Hz				

Figure 8 CAPSTAN Phase System's Constant

3.3 CAP P/D FIX System

- For the conditions below, switch SW4 is on and the positive (+) input terminal of the mixing amplifier is fixed at 1/2 VCC. But, the PD OUT terminal is not fixed. (PD error is output)
 - The capstan speed is shifted from the center by the ranges below.

NTSC -7.17 to 8.35% PAL -8.05 to 9.56%

- In PB mode, if CTL pulse is not detected until the following detection time.
 Detection time: NTSC 100 to 133 ms PAL 120 to 160 ms
- · The system is in SLOW speed mode.
- The P/D OUT pulse is fixed at 1/2 VCC when the CAP P/D FIX system is turned on by serial data.

Figure 9

3.4 PB CTL Schmitt Level

• DC coupling of CTL amplifier and PB CTL Schmitt input must be performed to supply a bias to compensate the lack of an input bias.

The VTHs below are available.

- $1) +130 \text{ mV} \pm 30 \text{ mV}$
- (2) -130 mV ±30 mV
- 3 +260 mV ±60 mV
- 4 -260 mV ±60 mV
- $(5) +500 \text{ mV} \pm 80 \text{ mV}$
- (6) -500 mV ±80 mV

Figure 10

As shown in the table below, each VTH is set as a standard level according to the search speed.

VTH

		NTSC		PAL	PAL			
MODE	Vтн a, b	SP	LP	EP	SP	LP		
1	±130mV	SLOW	SLOW x 1	SLOW x 1	SLOW x 1	SLOW x 1		
II	±260mV	x 1-x 2	x 2-x 5	x 2-x 9	x 1–x 4	x 2-x 9		
III	±500mV	x 3-	x 6–	x 10-	x 5–	x 10-		

VTH automatic selection: The VTH is set to the value with a higher sensitivity than the standard level by one step when a NO CTL pulse is

detected. The V_{TH} returns to the standard level when a Schmitt amplifier with a higher level than the standard value by one step is activated.

Figure 11

* In SLOW speed mode, the VTH is fixed to 130 mV.

MODE		1	11	HI	
Comparator B		_	500 mV	1000 mV	Returns to the standard level
Schmitt A	Q = 0	130 mV	260 mV	500 mV	Standard level
	Q = 1	130 mV	130 mV	260 mV	After NO CTL pulse detection

3.5 Mixing Amplifier Gain Selection

Figure 12

			NTSC		PAL			
SW5	SW6	SW7	SP	LP	EP	SP	LP	
OFF	OFF	OFF	SLOW	SLOW	SLOW	SLOW	SLOW	
OFF	OFF	OFF		х1	x1-x3		x1-x2	
ON	OFF	OFF	x1-x2	x2-x5	x4-x9	x1-x4	x3-x9	
ON	ON	OFF	x3-x8	x6-x17	x10-x27	x5-x13	x10-x27	
ON	ON	ON	x9-	x18-	x28-	x14-	x28-	

Switch SW8 is controlled by serial data. Each gain is selected in 10-dB steps. Therefore, R2 is

R1/2, R3 is R1/6, and R4 is R1/18.

4. V Pulse

4.1 VP Output Conditions

- The V pulse is output when a PB*VP pulse is on.
- For the variable shift of t1, see the corresponding item.
- ts is output only when VP +6H is specified. Without any specifications, it is set low.

4.2 VP Position

Figure 13

• ta: VP Position

In SLOW and two-times speed modes, the channels below can be changed. In other modes, both channels 1 and 2 are fixed.

Mode		CH-1	CH-2
2 Head		Fixed	Variable
DA - 4 SP		Fixed	Variable
	SP	Variable	Fixed

Variable amount (depending on 5 bits (N) of serial data)

NTSC	64 (41.5-N) / fsc	≈ 3.0 H to 11.7 H
PAL	64 (43.75-N) / fsc	≈ 2.9 H to 9.9 H

Fixed amount approx. is 6.0H

4.3 VP Shift

- tβ: VP Shift

As described below, the VP shift amount, shift channel, and shift direction vary depending on the serial data.

VP shift amount

DAT	ΓA								ADDRESS								
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	SHIFT Amount
_	0	0	0	_	_	_	_	_	1	0	0	0	0	0	1	1	0.0 H
	0	0	1														0.5 H
	0	1	0														1.0 H
_	0	1	1														1.5 H
_	1	0	0														2.0 H
	1	0	1														2.5 H

VP shift channel and shift direction (is lagging direction)

	DATA		ADDRESS												
Bit	A	9	8	7	6	7	6	5	4	3	2	1	0	CH-1	CH-2
	0	0	0	_		1	0	0	0	0	0	1	1	Fixed	Fixed
	1														
	0	0	1	_	_	_		٠.						Fixed	⊕ Shift
	1	0	1	_	_	_								Fixed	Shift Shift
٠.	0	1	0	_	_	_								→ Shift	Fixed
	1	1	0	_	_	_								Shift ■ Shift	Fixed
	0	1	1	_	_	_								Shift	⊕ Shift
	1	1	1	_		_								⊕ Shift	Shift Shift

Note: To control the VP shift, the serial data is transmitted when no V pulse is output.

5. External Synchronization (EXT. RESET)

Timing Chart

6. H-OSC

7. Noise Det. & Field Det.

Noise in the COMP-SYNC signal is detected as follows:

- Noise detection
 Detects whether the noise in an H-SYNC signal exceeds the specified amount.
- H-SYNC detection
 Detects whether the loss of an H-SYNC signal exceeds the specified amount.

The operation below is performed when a noise detector is activated (noise is detected).

- A high signal is output to the output pin (pin 56) of noise detector.
- 2) A synchronous reset pulse sent from V-SYNC to REF 30 is stopped.
- In fh correction mode, the fh correction error output is adjusted.

8. REC CTL Duty Cycle and Duty I/O

In REC mode, the REC CTL duty cycle is determined by the modes and duty I/O below.

	WIDE ASPECT	VISS/ VASS	INDEX REC	DUTY I/O	CTL DUTY (%)	Remarks
1	NOT	VISS	NOT	Н	62.5	
				L	70.0	Note 1
2	NOT	VISS	BUSY	H (OUT)	62.5	_ Note 2
•				L (OUT)	30.0	
3	NOT	VASS	CAN NOT	Н	62.5	Note 3
				L	30.0	
4	YES	VISS	NOT	Н	57.5 or 62.5	Note 4
_				L	70.0	Note 1
⑤	YES	VISS	BUSY	H (OUT)	57.5 or 62.5	Note 5
_				L (OUT)	25.0 or 30.0	_
6	YES	VASS	CAN NOT	Н	57.5 or 62.5	
_				L	25.0 or 30.0	

Notes: 1. ASM mark

- 2. Duty I/O enters the output mode.
- 3. In VASS mode, no ASM mark is used.
- 4. Recorded by an LLSS pattern.
- 5. Duty I/O enters the output mode. An LLSS pattern is continued even if the high and low levels of the duty I/O are selected.
- * In back-space editing mode, the LLSS pattern is not continued.

9. Duty I/O

(1) ASM mode

An ASM mark is detected and output. The duty I/O is set low during ASM mark detection.

The threshold level is 66.7%.

- * The VISS/VASS function is not activated.
- ② ASM*VASS*WRITE mode

 Duty rewrite mode. This mode is determined by the rewrite of DUTY I/O level.

L: DUTY, WA: 30%, WA: (S)25 or (L)30%

H: DUTY, WA: 62.5%, WA: (S)57.5 or (L)62.5%

- * Pin 41 is set high.
- * The I/D LLSS pattern in a wide aspect ratio is not continued before and after the rewrite point when a duty cycle is rewritten. The LLSS pattern is only continued during continuous rewrite.
- (3) ASM*VASS*WRITE mode
 A duty cycle is detected and output. The duty

I/O is set low when the duty cycle is less than 40%.

- (4) ASM*VISS*VISS REC mode

 Duty rewrite mode. In this mode, VISS is written. An IC automatically determines the write duty cycle by controlling the low and high signals at pin 41. An LLSS pattern is continued even if the low and high levels of the duty I/O change. However, it is not continued before and after the write point.
- (5) ASM*VISS*VISS REC mode
 Index detection mode. The duty I/O is
 latched low when VISS is detected.
 Presetting this mode requires the serial
 operation.

Note: The result of a duty cycle immediately after a mode is selected is undefined. To define the duty cycle, a minimum of one cycle and a maximum of two cycles are required.

10. YNR Pulse

Timing Chart

(Unit: µs)

Mode	PGMM	t1	t2	t3	t4	t5	t6	t7
NTSC	CR	10.9	136.1	73.5	136.1	10.9	73.5	73.5
	Digital	234.4	360.0	297.0	360.0	234.4	297.0	297.0
PAL	CR	8.8	138.7	73.8	138.7	8.8	73.8	73.8
	Digital	737.8	867.7	802.7	867.7	737.8	802.7	802.7

Delay (T) of Digital PGMM is calculated from formula below.

 $T = (36 + 32 \times N) / fsc$ N: 1 to 255 (serial data)

Drum Select

Pin 9 Pin 10	Н	м	L
Н	2Head ①	2Head ②	DA4 ④
М	DA4 ①	DA4 ②	DA4 ③
L	DA4 ① TEST	DA4 ② TEST	DA4 ③ TEST

Test: CFG is count-downed by 1/2

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit
Maximum supply voltage	Vcc Max	7.0	V
Operating supply voltage	Vopr	4.5 to 6.0	
Storage temperature	Tstg	-40 to +125	°C
Operating temperature	Topr	-10 to +70	°C
Power dissipation	P _T	500	mW
Pin max. applied voltage	·	0 to Vcc	V

Application Test

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Terminal	Circuit
Supply current	Icc	8.0	20.0	32.0	mΑ	No Load Pin 28 & 39 Total	28, 39	
Binary output voltage	Vol		0.0	0.05	V	No Load	1 to 3, 43 to	
			0.3	0.8	V	Load Current = 2 mA	- 46, 53 to 56 -	
	Vон	4.9	5.0		٧	No Load		
		4.2	4.7		V	Load Current = -2 mA		
Pull-up output voltage	Vol	0.0	0.1	0.3	٧	No Load	40, 41	_
		_	0.4	8.0	٧	Load Current = 2mA		
	Vон	4.9	5.0	_	٧	No Load	•	
Pull-up resistance	Rн	4.5	9.0	13.5	kΩ		•	
Ternary output voltage	Vol	0.0	0.1	0.3	٧	No Load	47	
		· <u></u>	0.4	1.0	٧	Load Current = 2mA		
	Vон	4.7	4.9	5.0	٧	No Load		
		4.0	4.6	_	٧	Load Current = -2mA		
	Vом	2.4	2.5	2.6	٧	No Load	•	
Ternary output Output impedance	Rм	4.5	9.0	13.5	kΩ		•	
REC CTL output Pin-to-pin voltage	VCTL	4.3	4.6	4.9	V	No Load voltage between Pin 29 & 30	29, 30	
REC CTL Output impedance	RCTL	300	450	750	Ω	1 ≤ 3mA Pin 29 & 30 Total		
Binary inputVтн	Vтн	1.5	2.5	3.5	٧		18, 41, 51, 5	2
Binary input Pull-up resistance1	RH1	4.5	9.0	13.5	kΩ		41, 51, 52	
Binary input Pull-up resistance2	RH2	14.0	28.0	42.0	kΩ		18	

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Application Terminal	Circuit
Ternary input Vтн	VTH1	1.0	1.4	1.9	٧	L/M VTH	9, 10, 48	
	VTH2	3.1	3.5	4.0	٧	M/H VTH		
Ternary input Pin voltage	Vм	2.1	2.5	2.9	V			
Ternary input Input impedance	Rм1	17.3	34.5	51.8	kΩ			
fsc input Sensitivity	Vrsc	_	_	150	mVpp		42	-
CTLP schmitt Input Vтн	V ₊ TH1	100	130	160	mVp	Normal speed	36	
	V-TH1	-160	-130	-100	mVp			
	V+TH2	200	260	320	mVp	Medium-speed search		
	V-TH2	-320	-260	-200	mVp			
	V+TH3	420	500	580	mVp	High-speed search	-	
	V-тнз	-580	-500	-420	mVp			
Schmitt input Pin voltage 1	VIS1	2.2	2.6	3.0	V		8	
DFG schmitt Input Vтн	V₊тн	120	190	250	mVp		-	
	VTH	-30	0	30	mVp		-	
DFG schmitt Input impedance	Rм2	18.5	37.0	55.5	kΩ		-	
DPG schmitt Pin voltage 2	VIS2	1.7	2.1	2.5	٧		6	
DPG schmitt Input Vтн	V ₊ TH	0.4	0.5	0.6	٧		_	
	V-TH	0.1	0.2	0.3	٧		_	
DPG schmitt Input impedance	Rмз	20.5	41.0	61.5	kΩ			
CFG schmitt Pin voltage 3	Visa	2.3	2.5	2.7	٧		38	
CFG schmitt Input Vтн	V+тн	60	80	100	mVp		_	
	V-тн	-10	0	10	mVp			
CFG schmitt Input impedance	Rм4	15.0	30.0	45.0	kΩ			
Analog SW On resistance	Rasw	150	300	500	Ω		16 to 17, 21 to 23, 24 to 26, 34 to 35	

Min 1.0 21.8	Typ 1.5	2.0		V) (cont) Test Conditions	Application Terminal	Test Circuit
		2.0	V			- VII VUII
21.8					50	
	43.5	65.3	kΩ		_	
1.2	1.8	2.4	٧	DC input	49	
0.8	1.3	1.8	٧		_	
300	500	700	mVp	Capacitive coupling Pin peak voltage	_	
15.3	30.5	45.8	kΩ		_	
	2.5	_	V	VTH of each Mono-multi	4, 5	
56	60	62	dB	f = 10 kHz		1
	85	_	dB	Open loop gain		
57	60	62	dB	f = 1 kHz		2
_	85	_	dB	Open loop gain		
	60	62	dB	f = 1 kHz		2
		57 60 — 85	57 60 62 — 85 —	57 60 62 dB — 85 — dB	57 60 62 dB f = 1 kHz — 85 — dB Open loop gain	57 60 62 dB f = 1 kHz — 85 — dB Open loop gain

dB Open loop gain

gain

Aco

85

Test Circuit

fsc input circuitry

