HD49781/NT

Wide Aspect VISS Recording NTSC/PAL 1-Chip VHS Servo

VTR SERVO LSI HD49781 has digital servo functions for drum and capstan motor, as well as analog amplifier. It is a 1-chip device, and therefore can be applied on various types of VTR sets. This IC comes in 56 -pin plastic shrink DIP and 56-pin QFP packages. This IC uses serial control method to connect to system controller (microcomputer). By this method, many functions can be entered internally, and the number of extemal components and wirings can be reduced.

Features

- PAL/NTSC 1-chip.
- By changing the corresponding mask ROM, CFG (capstan frequency generator), DFG (drum frequency generator) and HEAD SW timing can be set to satisfy the particular set's specifications.
- In previous versions, there are only VISS recording and rewriting function, and VISS detection function. For this IC, wide aspect VISS recording and rewriting function are added.
- In VASS function mode, recording and rewriting can be performed.
- With CMOS analog technology, CFG, DFG and DPG Schmitt amplifier, and analog switch are included.
- Uses synchronized serial bus with microcomputer interface. As the result, it is bussing-common with other Hitachi's ICs, and a less-wiring system can be constructed.

Main Functions

- 2-line serial bus.
- EP-designated Head function.
- VISS/VASS (Wide Aspect VISS Recording)
- Tracking data is controlled by serial bus.
- Digital adjustment of HEAD SW point.
- CTLP AMP Schmitt level is self-switchable.
- Search speed is selectable from 1-time to 63 -times in each mode.
- Assemble Mark recording and detecting.
- Search function in Assemble mode.
- YNR PULSE output.
- CTLP AMP gain and frequency characteristics are controlled serial bus.
- Drum and capstan PD-FIX are controlled by serial bus.
- Drum and capstan outputs are controlled by serial bus.
- Field detection.
- Noise detection.
- Feedback fh-correction.
- V-PULSE output
- V-PULSE polarity is controlled by serial bus.

Block Diagram

Pin Function

Pin Pin
No. Name

//O Format

4	CTL	Time constant: 1 to 40 ms
	DELAY	Note: See time chart
	MM	Retriggerable (discharge pulse: approx. 1 ms)
5	PG MM	Non- retriggerable Note: See head SW timing

6	$\begin{aligned} & \text { DRUM } \\ & \text { PG IN } \end{aligned}$		Schmitt input. Internal bias: approx. 2 V Note: See head SW timing				$\begin{aligned} & \cdots+V_{\text {TH }} \\ & \cdots-V_{\text {TH }} \\ & -\quad \text { Bias } \end{aligned}$	$\longleftarrow \infty$
8	$\begin{aligned} & \text { DRUM } \\ & \text { FG IN } \end{aligned}$		Schmitt input. Internal bias: approx. 2.5 V Note: See head SW timing					
9	DRUM Select	A	Ternary inpüt Open = " M "	$\begin{aligned} & \operatorname{Pin} 9 \\ & \operatorname{Pin} 10 \end{aligned}$	H	M	L	
10		B		H	2 Head (1)	2 Head (2)	DA4-(4)	
				M	DA-4(1)	DA4-(2)	DA4- (3)	
				L	(DA-4(1)	$\begin{aligned} & \text { DA-4-4 }(2) \\ & \text { TEST } \end{aligned}$	DA-4 (3) TEST	

Note: See head SW timing

- Output D range: 0 to 5 V (No load)
- Output impedance: $2 \mathrm{k} \Omega$ max.

HD49781/NT

Pin Function (cont)

Pin Pin
No. Name
Function
I/O Format

29 CTL Head Θ
30 CTL Head \oplus

CTLP Amp	- Open Gain-	
	- No oscillation at full	
	feedback	80 min
	- Output D range 0 to 5 V	
	(No Load)	

- Output impedance: $2 \mathrm{k} \Omega$ max

Pin Function (cont)

Pin
No.

Name Function

Functional Description

1. Synchronized Serial Bus (SSB)

1.1 Outline

1.1.1 Configuration

This communication technique consists of one serial clock (SCL) and one serial data (SDA) lines. This SSB technique enables multiple ICs to be controlled using a common bus.

1.1.2 Data Length

In this servo IC, the data consists of 8 bits in the address field and 16 bits in the data field.

1.1.3 Operation Description

Data is fetched and stored into the shift registers of the ICs connected to a synchronized serial bus and defined, as described below, by the state of the SDA counter that increments on the falling edge of SDA signal. The SDA counter operates
while the SCL clock is high, and is reset while it is low.

- HOLD mode

The system enters the HOLD mode at the second falling edge of SDA data. Data is held in the shift register of an IC until the HOLD mode changes to LATCH mode. This servo IC has four addresses. After one address is being "HOLD"ed, all incoming data from this point of time until the triggering of LATCH pulse is nullified (ignored).

- LATCH mode

The system enters the LATCH mode at the third falling edge of SDA data. Data is then output from the shift register of an IC to the IC control register.

Through the combination of the HOLD and LATCH modes, this servo IC can be synchronized with multiple other ICs by only one-word instruction.

1.2 Format

1.2.1 Timing Chart: In this servo IC, the synchronized serial bus consists of 8 bits in an
address block and 16 bits in a data block as shown below. Only the data length (or plus Don't Care) is sent on the transmission side.

Figure 1 Timing Chart

1.2.2 Tail Mark

- HOLD mode

The system enters the HOLD mode at the second falling edge of SDA data while the SCL clock is high. Data is held in the shift register of an IC until the HOLD mode changes to LATCH mode.

Figure 2 HOLD Mode

- LATCH mode

The system enters the LATCH mode at the third falling edge of SDA data while the SCL clock is high. Data is output from the shift register of an IC to the IC control register.

Figure 3 LATCH Mode

1.2.3 Timing (Servo $\mathbf{I C}$ only)

$\mathrm{t} 1 \geq 0.5 \mu \mathrm{~s}, \mathrm{t} 2 \geq 0.5 \mu \mathrm{~s}, \mathrm{t} 3 \geq 0.5 \mu \mathrm{~s}, \mathrm{t} 4 \geq 0.5 \mu \mathrm{~s}$
$\mathrm{t} 5 \geq 0.5 \mu \mathrm{~s}, \mathrm{t} 6 \geq 0.5 \mu \mathrm{~s}, \mathrm{t} 7 \geq 0.5 \mu \mathrm{~s}$

HD49781/NT

1.3 Examples of Realization Methods of Tail Mark Circuitry

Figure 4 Method 1

Figure 5 Method 2

1.4 Servo IC Internal Registers' Address Assignment

Figure 6

HD49781/NT

SSB Serial Table

SSB Serial Table (cont)

SSB Serial Table (cont)

| DATA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MSB |
| F E D C B A 9 8 |

2. DRUM System Specification

2.1 DRUM Speed System's Constants

	DFG Frequency	S/H Frequency	Counter Clock	Counter Bit	FV-Gain	DRUM PD $\overline{\text { ADJ }}$
NTSC	359.61 Hz	359.61 Hz	$\mathrm{fsc} / 3$	12 bit	$40.5 \mathrm{mV} / \%$	312 Hz to 425 Hz
PAL	300.00 Hz	300.00 Hz	$\mathrm{fsc} / 4$	12 bit	$45.1 \mathrm{mV} / \%$	264 Hz to 348 Hz

2.2 DRUM Phase System's Constants

		S/H Frequency	Counter Clock	Counter Bit	PD Gain
NTSC	Phase detection	29.97 Hz	fsc/4	12 bit	$1.092 \mathrm{~V} / \mathrm{ms}$
	fH correction	3.93 kHz	fsc/4	11 bit	$2.184 \mathrm{~V} / \mathrm{ms}$
PAL	Phase detection	25.00 Hz	$\mathrm{fsc} / 4$	12 bit	$1.353 \mathrm{~V} / \mathrm{ms}$
	fH correction	3.91 kHz	$\mathrm{fsc} / 4$	11 bit	$2.706 \mathrm{~V} / \mathrm{ms}$

2.3 Drum P/D FIX System

1) P/D OUT FIX

P/D OUT signal is fixed at $1 / 2 \mathrm{VCC}$ when the DP/D FIX system is turned on by serial data.
2) SW1 On condition

Switch SW1 is on for the following conditions:

- In states other than fH correction and when the drum speed exceeds the range of Drum Speed System Constant DRUM PD ADJ in table 2-1.
- When COMP SYNC no-signal is detected or when noise is detected during ff correction.

Figure 7 DRUM P/D FIX System

2.4 fH Correction System

1) f f correction accuracy

NTSC $63.5556 \mu \mathrm{~s}$ (discrepancy: 0)
PAL $\quad 63.9996 \mu \mathrm{~s}$ (discrepancy: $-1 / 625 \mathrm{fsc}$ $\mathrm{sec})$
2) fH correction

- The drum reference counter is forcibly synchronized with DRUM Head SW.
- Switch SW2 is off and switch SW3 is on.
- An H DISCRI error is output to the PD OUT pin.

3) ft correction cancellation

- Switch SW3 is off.
- Switch SW2 remains on until the time shown below after the fH correction is cancelled.
NTSC 67 to 100 ms
PAL 80 to 120 ms

3. CAPSTAN System Specification

3.1 CAPSTAN Speed System's Constants

Note: F/N Center Correction (during search): The F/V center correction below is performed in fH correction mode. In search mode, FG is converted after FG pulse is decremented in the same ratio as for CTL pulse. The F/V-converted center frequency is corrected according to the speed as shown below.

$\boldsymbol{f H}$ Correction (Number of rotations)	NTSC	SP	LP
7.5%	From $x 9$	FP	
3.3%	$x 3$ to $x 8$	$x 6$ to $x 17$	From $\times 28$
0%	$x 2$ to SLOW to $x-2$	$x 5$ to SLOW to $x-5$	$x 10$ to $\times 27$
-3.5%	$x-3$ to $x-8$	$x-6$ to $x-17$	$x 9$ to SLOW to $x-9$
-7.1%	From $x-9$	From $x-18$	$x-10$ to $x-27$

fH Correction (Number of rotations)	$\mathbf{P A L}$	
$8 \mathbf{S P}$	LP	
4.7%	From $\times 14$	From $\times 28$
0%	$x 5$ to $\times 13$	$x 10$ to $\times 27$
-4.5%	$x 4$ to SLOW to $x-4$	$x 9$ to SLOW to $x-9$
-8.1%	$x-5$ to $x-13$	$x-10$ to $x-27$

HD49781/NT

3.2 CAPSTAN Phase System's Constant

		S/H Frequency	Counter Clock	Counter Bit	PD GAIN		
		kP 1			kP 2		
NTSC			29.97 Hz	fsc/8	11 bit	$0.546 \mathrm{~V} / \mathrm{ms}$	$1.639 \mathrm{~V} / \mathrm{ms}$
PAL	PB	25.00 Hz	fsc/8	11 bit	$0.677 \mathrm{~V} / \mathrm{ms}$	$2.030 \mathrm{~V} / \mathrm{ms}$	
	REC	25.22 Hz					

Figure 8 CAPSTAN Phase System's Constant

3.3 CAP P/D FIX System

1) For the conditions below, switch SW4 is on and the positive $(+)$ input terminal of the mixing amplifier is fixed at $1 / 2 \mathrm{Vcc}$. But, the PD OUT terminal is not fixed. (PD error is output)

- The capstan speed is shifted from the center by the ranges below.

$$
\begin{array}{ll}
\text { NTSC } & -7.17 \text { to } 8.35 \% \\
\text { PAL } & -8.05 \text { to } 9.56 \%
\end{array}
$$

- In PB mode, if CTL pulse is not detected until the following detection time.
Detection time: NTSC 100 to 133 ms
PAL 120 to 160 ms
- The system is in SLOW speed mode.

Figure 9
2) The P/D OUT pulse is fixed at $1 / 2 \mathrm{VCc}$ when the CAP P/D FIX system is turned on by serial data.

3.4 PB CTL Schmitt Level

- DC coupling of CTL amplifier and PB CTL

Schmitt input must be performed to supply a bias to compensate the lack of an input bias.

The Vths below are available.
(1) $+130 \mathrm{mV} \pm 30 \mathrm{mV}$
(2) $-130 \mathrm{mV} \pm 30 \mathrm{mV}$
(3) $+260 \mathrm{mV} \pm 60 \mathrm{mV}$
(4) $-260 \mathrm{mV} \pm 60 \mathrm{mV}$
(5) $+500 \mathrm{mV} \pm 80 \mathrm{mV}$
(6) $-500 \mathrm{mV} \pm 80 \mathrm{mV}$

Figure 10

As shown in the table below, each Vrt is set as a standard level according to the search speed.
VTH

		NTSC			PAL	
MODE	V	SH \mathbf{a}, \mathbf{b}	SP	LP	EP	SP
I	$\pm 130 \mathrm{mV}$	SLOW	SLOW $\times 1$	SLOW $\times 1$	SLOW $\times 1$	SLOW $\times 1$
II	$\pm 260 \mathrm{mV}$	$\times 1-\times 2$	$\times 2-\times 5$	$\times 2-\times 9$	$\times 1-\times 4$	$\times 2-\times 9$
III	$\pm 500 \mathrm{mV}$	$\times 3-$	$\times 6-$	$\times 10-$	$\times 5-$	$\times 10-$

Vth automatic selection: The $V_{\text {TH }}$ is set to the value with a higher sensitivity than the standard level by one step when a NO CTL pulse is
detected. The $\mathrm{V}_{\text {Th }}$ returns to the standard level when a Schmitt amplifier with a higher level than the standard value by one step is activated.

Figure 11

* In SLOW speed mode, the VTH is fixed to 130 mV .

MODE		I	II	III	
Comparator B		-	500 mV	1000 mV	Returns to the standard level
Schmitt A	$\mathrm{Q}=0$	130 mV	260 mV	500 mV	Standard level
	$\mathrm{Q}=1$	130 mV	130 mV	260 mV	After NO CTL pulse detection

HD49781/NT

3.5 Mixing Amplifier Gain Selection

Figure 12

SW5	SW6	SW7	NTSC			PAL	
			SP	LP	EP	SP	LP
OFF	OFF	OFF	SLOW	SLOW	SLOW	SLOW	SLOW
OFF	OFF	OFF		x 1	$x 1-x 3$		x1-x2
ON	OFF	OFF	$\mathrm{x} 1-\mathrm{x} 2$	x2-x5	x4-x9	x1-x4	x3-x9
ON	ON	OFF	x3-x8	x6-x17	x10-x27	x5-x13	$\times 10-x 27$
ON	ON	ON	x9-	$\times 18-$	$\times 28-$	x14-	$\times 28-$

Switch SW8 is controlled by serial data. Each gain is selected in $10-\mathrm{dB}$ steps. Therefore, R2 is
$\mathrm{R} 1 / 2, \mathrm{R} 3$ is $\mathrm{R} 1 / 6$, and R 4 is $\mathrm{R} 1 / 18$.
4. V Pulse

4.1 VP Output Conditions

- The V pulse is output when a $\mathrm{PB} * \mathrm{VP}$ pulse is on.
- For the variable shift of t, see the corresponding item.
- t 3 is output only when $\mathrm{VP}+6 \mathrm{H}$ is specified. Without any specifications, it is set low.

4.2 VP Position

Figure 13

- t α : VP Position

In SLOW and two-times speed modes, the channels below can be changed. In other modes, both channels 1 and 2 are fixed.

Mode		CH-1	CH-2
2 Head		Fixed	Variable
DA -4	SP	Fixed	Variable
	$\overline{\mathrm{SP}}$	Variable	Fixed

Variable amount (depending on 5 bits (N) of serial data)

NTSC $64(41.5-\mathrm{N}) / \mathrm{fsc} \approx 3.0 \mathrm{H}$ to 11.7 H
PAL $64(43.75-\mathrm{N}) /$ fsc $\approx 2.9 \mathrm{H}$ to 9.9 H

Fixed amount approx. is 6.0 H

HD49781/NT

4.3 VP Shift

- $\mathrm{t} \beta$: VP Shift

As described below, the VP shift amount, shift channel, and shift direction vary depending on the serial data.

VP shift amount

DATA

ADDRESS

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	SHIFT Amount
0	0	0	-	-	-	-	-	1	0	0	0	0	0	1	1	0.0 H	
0	0	1														0.5 H	
0	1	0															
0	1	1															
1	0	0													1.5 H		
1	0	1											2.0 H				

VP shift channel and shift direction (\oplus is lagging direction)

Note: To control the VP shift, the serial data is transmitted when no V pulse is output.

5. External Synchronization (EXT. RESET)

(48) H In PB mode, synchronized with the internal reference period. In REC, ASBL, and

Pin INST modes, synchronized with the V-SYNC signal.
M In all modes other than fH correction, this positive edge becomes a reference edge. It is not related to the V-SYNC signal or the internal reference period.

Timing Chart

HD49781/NT

6. H-OSC

Note: H-OSC is output with the additional V-pulse.
H-OSC contains a jitter of one clock for every fsc even if an external H-SYNC signal is stable.

7. Noise Det. \& Field Det.

Noise in the COMP-SYNC signal is detected as follows:

1) Noise detection

Detects whether the noise in an H-SYNC signal exceeds the specified amount.
2) H-SYNC detection

Detects whether the loss of an H-SYNC signal exceeds the specified amount.

The operation below is performed when a noise detector is activated (noise is detected).

1) A high signal is output to the output pin (pin 56) of noise detector.
2) A synchronous reset pulse sent from V-SYNC to REF 30 is stopped.
3) In fH correction mode, the fH correction error output is adjusted.

8. REC CTL Duty Cycle and Duty I/O

In REC mode, the REC CTL duty cycle is determined by the modes and duty I/O below.

	WIDE ASPECT	VISS/ VASS	INDEX REC	DUTY ע/O	CTL DUTY (\%)	Remarks
(1)	NOT	VISS	NOT	H	62.5	
				L	70.0	Note 1
(2)	NOT	VISS	BUSY	H (OUT)	62.5	Note 2
				L (OUT)	30.0	
(3)	NOT	VASS	CAN NOT	H	62.5	Note 3
				L	30.0	
(4)	YES	VISS	NOT	H	57.5 or 62.5	Note 4
				L	70.0	Note 1
(5)	YES	VISS	BUSY	H (OUT)	57.5 or 62.5	Note 5
				L (OUT)	25.0 or 30.0	
(6)	YES	VASS	CAN NOT	H	57.5 or 62.5	
				L	25.0 or 30.0	

Notes: 1. ASM mark
2. Duty I/O enters the output mode.
3. In VASS mode, no ASM mark is used.
4. Recorded by an LLSS pattern.
5. Duty I/O enters the output mode. An LLSS pattern is continued even if the high and low levels of the duty I/O are selected.

* In back-space editing mode, the LLSS pattern is not continued.

9. Duty I/O

HD49781/NT

(1) ASM mode

An ASM mark is detected and output. The duty I/O is set low during ASM mark detection.
The threshold level is 66.7%.

* The VISS/VASS function is not activated.
(2) $\overline{\mathrm{ASM}} *$ VASS $*$ WRITE mode

Duty rewrite mode. This mode is determined by the rewrite of DUTY I/O level.
L: DUTY, $\overline{\mathrm{WA}}: 30 \%$, WA: (S) 25 or (L) 30%

H: DUTY, $\overline{W A}: 62.5 \%$, WA: (S) 57.5 or (L) 62.5%

* Pin 41 is set high.
* The I/D LLSS pattern in a wide aspect ratio is not continued before and after the rewrite point when a duty cycle is rewritten. The LLSS pattern is only continued during continuous rewrite.
(3) $\overline{\text { ASM }} *$ VASS $* \overline{\text { WRITE mode }}$

A duty cycle is detected and output. The duty

I/O is set low when the duty cycle is less than 40\%.
(4) $\overline{\mathrm{ASM}}^{*}$ VISS*VISS REC mode

Duty rewrite mode. In this mode, VISS is written. An IC automatically determines the write duty cycle by controlling the low and high signals at pin 41. An LLSS pattern is continued even if the low and high levels of the duty I/O change. However, it is not continued before and after the write point.
(5) $\overline{\mathrm{ASM}^{*}}$ VISS* $\overline{\mathrm{VISS} \text { REC }}$ mode Index detection mode. The duty I/O is latched low when VISS is detected.
Presetting this mode requires the serial operation.

Note: The result of a duty cycle immediately after a mode is selected is undefined. To define the duty cycle, a minimum of one cycle and a maximum of two cycles are required.

10. YNR Pulse

Timing Chart

HD49781/NT

HSW Timing (1)

HSW Timing (2)

(Unit: $\mu \mathrm{s}$)

Mode	PGMM	$\mathbf{t 1}$	$\mathbf{t 2}$	$\mathbf{t 3}$	$\mathbf{t 4}$	$\mathbf{t 5}$	$\mathbf{t 6}$	$\mathbf{t 7}$
NTSC	CR	10.9	136.1	73.5	136.1	10.9	73.5	73.5
	Digital	234.4	360.0	297.0	360.0	234.4	297.0	297.0
PAL	CR	8.8	138.7	73.8	138.7	8.8	73.8	73.8
	Digital	737.8	867.7	802.7	867.7	737.8	802.7	802.7

Delay (T) of Digital PGMM is calculated from formula below.

$$
\begin{aligned}
& \mathrm{T}=(36+32 \times \mathrm{N}) / \mathrm{fsc} \\
& \mathrm{~N}: 1 \text { to } 255 \text { (serial data) }
\end{aligned}
$$

Drum Select

Pin 9			
Pin 10	\mathbf{H}	\mathbf{M}	\mathbf{L}
H	2Head (1)	2Head (2)	DA4 (4)
M	DA4 (1)	DA4 (2)	DA4 (3)
L	DA4 (1) TEST	DA4 (2) TEST	DA4 (3) TEST

Test: CFG is count-downed by $1 / 2$

HD49781/NT

Absolute Maximum Ratings $\left(\mathbf{T a}=\mathbf{2 5}^{\circ} \mathbf{C} \mathbf{C}\right.$ Symbol	Rating	.	Unit
Item	Vcc Max	7.0	V
Maximum supply voltage	Vopr	4.5 to 6.0	V
Operating supply voltage	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage temperature	Topr	-10 to +70	${ }^{\circ} \mathrm{C}$
Operating temperature	P_{T}	500	mW
Power dissipation		0 to Vcc	V
Pin max. applied voltage			

Electrical Characteristics ($\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}$)

Item	Symbol	Min	Typ	Max	Unit	Test Conditions	Application Terminal	Test Circuit
Supply current	Icc	8.0	20.0	32.0	mA	No Load Pin 28 \& 39 Total	28, 39	
Binary output	VoL	-	0.0	0.05	V	No Load	1 to 3,43 to	
		-	0.3	0.8	v	Load Current = 2 mA		
	Vor	4.9	5.0	-	V	No Load		
		4.2	4.7	-	V	Load Current $=-2 \mathrm{~mA}$		
Pull-up output	VoL	0.0	0.1	0.3	V	No Load	40,41	
voltage		-	0.4	0.8	V	Load Current $=2 \mathrm{~mA}$		
	Vor	4.9	5.0	-	V	No Load		
Pull-up resistance	RH	4.5	9.0	13.5	k Ω			
Ternary output	Vol	0.0	0.1	0.3	V	No Load	47	
		-	0.4	1.0	V	Load Current $=2 \mathrm{~mA}$		
	VOH	4.7	4.9	5.0	V	No Load		
		4.0	4.6	-	V	Load Current $=-2 \mathrm{~mA}$		
	Vom	2.4	2.5	2.6	V	No Load		
Ternary output Output impedance	RM	4.5	9.0	13.5	$\mathrm{k} \Omega$			
REC CTL output Pin-to-pin voltage	VCtL	4.3	4.6	4.9	V	No Load voltage between Pin 29 \& 30	29,30	
REC CTL Output impedance	Rcti	300	450	750	Ω	$\begin{aligned} & 1 \leq 3 \mathrm{~mA} \\ & \text { Pin } 29 \& 30 \text { Total } \end{aligned}$		
Binary inputVTH	VTH	1.5	2.5	3.5	V		18, 41, 51, 52	
Binary input Pull-up resistance 1	RH1	4.5	9.0	13.5	$\mathrm{k} \Omega$		41,51, 52	
Binary input Pull-up resistance2	RH2	14.0	28.0	42.0	k Ω		18	

Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}$) (cont)							Application Terminal	Test Circuit
Item	Symbol	Min	Typ	Max	Unit	Test Conditions ${ }^{\text {- }}$		
Ternary input VTH	VTH 1	1.0	1.4	1.9	V	UM VTH	9,10,48	
	$V_{\text {TH2 }}$	3.1	3.5	4.0	V	M/H VTH		
Ternary input Pin voltage	Vm	2.1	2.5	2.9	V			
Ternary input input impedance	Rm1	17.3	34.5	51.8	k Ω			
fsc input Sensitivity	Visc	-	-	150	mVpp		42	
CTLP schmitt Input $V_{T H}$	$\mathrm{V}+\mathrm{TH} 1$	100	130	160	mVp	Normal speed	36	
	V-TH1	-160	-130	-100	mVp			
	V +TH2	200	260	320	mVp	Medium-speed search		
	V -TH2	-320	-260	-200	mVp			
	V+TH3	420	500	580	mVp	High-speed search		
	V-TH3	-580	-500	-420	mVp			
Schmitt input Pin voltage 1	VIS1	2.2	2.6	3.0	v		8	
DFG schmitt Input V_{T} H	V_{+}TH	120	190	250	$m V p$			
	V-TH	-30	0	30	mVp			
DFG schmitt Input impedance	Rm2	18.5	37.0	55.5	k Ω			
DPG schmitt Pin voltage 2	VIS2	1.7	2.1	2.5	V		6	
DPG schmitt Input VTH	$\mathrm{V}+\mathrm{TH}$	0.4	0.5	0.6	V			
	V-TH	0.1	0.2	0.3	V			
DPG schmitt Input impedance	Rмз	20.5	41.0	61.5	k Ω			
CFG schmitt Pin voltage 3	Vis3	2.3	2.5	2.7	V		38	
CFG schmitt Input VTH	$V+$ TH	60	80	100	mVp			
	V-TH	-10	0	10	mVp			
CFG schmitt Input impedance	RM4	15.0	30.0	45.0	k Ω			
Analog SW On resistance	Rasw	150	300	500	Ω		$\begin{aligned} & 16 \text { to } 17,21 \\ & \text { to } 23,24 \text { to } \\ & 26,34 \text { to } 35 \end{aligned}$	

743

HD49781/NT

Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}$) (cont)							Application Terminal	Test Circuit
Item	Symbol	Min	Typ	Max	Unit	Test Conditions		
Power on reset Input VTH	V50TH	1.0	1.5	2.0	V		50	
Power on reset Pull-up resistance	R50	21.8	43.5	65.3	$\mathrm{k} \Omega$			
SYNC input VTH	V49TH	1.2	1.8	2.4	V	DC input	49	
SYNC input Pin voltage	V49	0.8	1.3	1.8	V			
SYNC input Input sensitivity	Vsync	300	500	700	mVp	Capacitive coupling Pin peak voltage		
SYNC input Input impedance	R49	15.3	30.5	45.8	k Ω			
Mono-multi VTH		-	2.5	-		VTH of each Mono-multi	4,5	
CTLP AMP gain	АстL	56	60	62	dB	$f=10 \mathrm{kHz}$		1
	Actlo	-	85	-	dB	Open loop gain		
DRUM AMP gain	AD	57	60	62	dB f	$\mathrm{f}=1 \mathrm{kHz}$		2
	ADO	-	85	-	dB	Open loop gain		
CAPSTAN AMP gain	Ac	57	60	62	dB f	$f=1 \mathrm{kHz}$		2
	Aco	-	85		dB	Open loop gain		

Test Circuit

1.

2.

$$
\text { Gain }=20 \log \frac{\text { Vout }}{V \text { in }}+60 \mathrm{~dB}
$$

fsc input circuitry

